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1. INTRODUCTION

Environmental hazards such as air pollution, extreme temperatures, and water pollution

are important causes of human morbidity and mortality. For example, The Lancet Com-

mission on Pollution and Health estimates that air pollution caused 6.5 million premature

deaths in 2015, amounting to about 12 percent of all deaths worldwide (Landrigan et al.,

2018). Such assessments are generally based on observational studies, which are prone to

estimation bias (Dominici, Greenstone and Sunstein, 2014). Although quasi-experimental

studies can address this bias, they typically measure health outcomes and treatment ex-

posure over short time periods that span less than one year, thereby overlooking effects

that may emerge years or decades later. This limitation is challenging to overcome because

quasi-experimental variation in chronic (long-run) treatment exposure is difficult to find,

data that track individuals over long time periods are rare, and endogenous responses such

as migration complicate the interpretation of estimates. However, optimal health and en-

vironmental policies require an accurate estimate of the lifelong health consequences of

permanent changes in exposure.

We propose a novel approach to address this limitation when the outcome is mortal-

ity. The approach combines well-identified short-run estimates with a recently developed,

individual-level model of health production that fits human survival curves well and accom-

modates a number of mortality dynamics (Lleras-Muney and Moreau, 2022). Our study

shows how to calibrate the model using empirical mortality estimates and then perform

counterfactuals that fully characterize the short- and long-run survival effects of both acute

and chronic changes in exposure. We validate the calibrated model by comparing its short-

run predictions to empirical estimates of outcomes measured using time windows or age

groups that differ from those used for calibration.

We use our approach to estimate the short- and long-run effects of exposure to air pollu-

tion on US population mortality. Our study focuses on sulfur dioxide (SO2), a major source

of fine particulate matter and the predominant pollutant measured in the decades following

the 1970 Clean Air Act. We assemble a new dataset that combines the universe of publicly

available daily-level death records (1972–1988) with data on air pollution and weather. Our

main empirical analysis investigates the causal effect of acute (1-day) air pollution exposure

on county-level mortality by instrumenting for observed changes in SO2 with changes in

local wind direction. We estimate that a 1-unit (≈10 percent) increase in SO2 raises 1-day
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mortality by 0.08 deaths per million (0.33 percent). Secondary analyses that incorporate

data on other pollutants indicate that our estimates reflect the causal effects of exposure to

both SO2 as well as secondary particulate matter derived from SO2.

The cumulative mortality effect of this 1-day exposure more than doubles when we ex-

tend the outcome window from one day to one month (28 days), demonstrating that air

pollution continues to have lethal effects long after exposure has ended. While statistical

power limits our ability to identify precise effects beyond a one-month window, we can

show that cumulative mortality remains elevated for at least three months following expo-

sure. These results are consistent with findings from the medical literature suggesting that

air pollution causes “accelerated aging” by, for example, hardening arteries and increasing

the risk of heart disease (Rajagopalan and Landrigan, 2021).

We document striking differences in mortality dynamics across different causes of death.

Our 1-day mortality estimate is driven roughly equally by deaths related to three groups of

causes: cardiovascular disease, cancer, and “other diseases,” a residual category that in-

cludes chronic lower respiratory illness and diabetes. Lengthening the outcome window to

encompass deaths over the subsequent month, however, causes the estimates for cardio-

vascular and other diseases to increase by a factor of 3–4, while the estimate for cancer

falls by 70 percent and becomes statistically insignificant. This fall in the magnitude of the

cancer-related mortality estimate over time implies that the cancer-related deaths occurred

predominantly among frail individuals who had short (less than one month) counterfactual

life expectancies—a phenomenon often referred to as “mortality displacement.” Altogether,

we conclude that acute exposure to air pollution produces two distinct mortality patterns:

mortality displacement in a subpopulation of frail individuals, where the cumulative mor-

tality effect quickly dissipates, and accelerated aging in a subpopulation of healthier indi-

viduals, where the cumulative effect grows over time. On net, the accelerated aging effect

dominates.

Our short-run analysis has two important limitations common to quasi-experimental

studies of air pollution: treatment is limited to acute (1-day) exposure, and the outcome

window is limited to one month following exposure. In the second part of our paper, we

quantify the effect of chronic (lifetime) exposure on long-run survival by adapting a dy-

namic production model of health to our daily mortality setting (Lleras-Muney and Moreau,

2022). While there are many ways to model survival, this model is particularly well-suited
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to our needs because it can accommodate both the accelerated aging and mortality displace-

ment patterns present in our setting. Our approach maps our short-run empirical estimates

to the model’s parameters, allowing us to form long-run projections that comply with well-

documented age patterns of human mortality.

We first calibrate the model’s baseline parameters using a 1972 US life table. To incor-

porate our empirical estimates, we impose the assumption that the effect of pollution ex-

posure on model parameters depends only on current exposure. We use age-specific 1-day

cancer mortality estimates to calibrate the effect of pollution exposure on the model pa-

rameter governing mortality displacement, and use the corresponding non-cancer mortality

estimates to calibrate the effect of exposure on the model’s aging parameter. We then use

this calibrated model to quantify the short- and long-run effects of both acute and chronic

exposure.

We validate the model in several ways. Because it is calibrated using only 1-day mortality

estimates, we can measure the model’s accuracy by comparing its mortality predictions

in the month following acute exposure to our corresponding empirical estimates. We also

assess the plausibility of assuming that the effect of exposure on model parameters depends

only on current exposure (e.g., does not depend on exposure history or age) by testing the

model’s ability to predict mortality for age groups not used in the calibration. For example,

we calibrate a model using IV mortality estimates for ages 70 and over and then assess its

ability to predict the pollution mortality effects for 65–69-year-olds, a younger age group

that has a different lifetime exposure history. Finally, we compare the estimated mortality

effects of short-term (up to 28-day) chronic pollution exposure to the corresponding model

predictions.

Overall, we find that the overwhelming majority of model predictions lie inside the 95%

confidence intervals of the IV estimates, supporting the calibrated model’s validity. We

also show that these predictions depend meaningfully on our estimate of the fraction of

deaths due to mortality displacement: alternatively assuming that acute exposure produces

either 0% or 100% mortality displacement yields predictions that lie far outside the 95%

confidence intervals of the IV estimates. These results demonstrate that, while all-cause

mortality estimates are insufficient for drawing reliable conclusions about longer-term sur-

vival, researchers can overcome this problem by appropriately incorporating information

about cause of death into a survival model.
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Finally, we use our model to quantify the projected effect of a permanent, 1-ppb de-

crease in SO2 on life expectancy. The model predicts that, all else equal, such a decrease

improves life expectancy at birth by 1.2–1.3 years, which is 7–8 times larger than a naive

estimate that extrapolates our one-month IV estimates to the whole life cycle. Although

this decrease in chronic exposure begins at birth, ninety percent of the improvements in life

expectancy occur after age 50 and over three-quarters occur after age 65. This result sug-

gests that most of the survival benefits of the drastic reductions in US air pollution levels

over the past fifty years have yet to emerge for cohorts born after the passage of the 1970

Clean Air Act. Because the model holds behavior fixed, its projections can be interpreted

as the gross benefits associated with pollution reduction, uncontaminated by longer-run

behavioral responses such as migration (Graff Zivin and Neidell, 2012, Currie et al., 2014).

The main contribution of our study is the development and application of a new frame-

work for estimating the long-run survival effects of chronic exposure to environmental

hazards. The standard approach estimates the short-run mortality effects of acute exposure

and then quantifies long-run survival effects using population life tables (e.g., Deschênes

and Greenstone, 2011), although recent work has improved the accuracy of this method

by incorporating individual-level predictions of counterfactual life expectancy (Deryug-

ina et al., 2019). However, that approach remains prone to bias if unobserved characteris-

tics are correlated with both life expectancy and the probability of dying from exposure,

and it is unable to quantify the effects of chronic exposure. By contrast, our study uses a

structural model to infer long-run survival effects from short-run quasi-experimental es-

timates, providing a novel example of a “best of both worlds” approach that combines

structural and experimental methods (Todd and Wolpin, 2023). Because the model lever-

ages well-documented features of human life-cycle mortality patterns, its projections are

more reliable than naive extrapolations that fail to incorporate this information. We further

demonstrate the credibility of this model by showing that its mortality predictions match

our empirical estimates from hold-out samples not used for calibration as well as three-year

chronic exposure estimates from Anderson (2020).

Our approach complements largely elusive efforts to directly estimate the long-run sur-

vival effects of pollution. Direct estimation requires identifying quasi-experimental varia-

tion in long-run exposure and accounting for behavioral responses that alter exposure, such

as migration. Ignoring these responses leads to an underestimate of the health costs of air
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pollution (Graff Zivin and Neidell, 2012, Currie et al., 2014). As a result, only a few cred-

ible quasi-experimental studies estimate mortality effects over multiple years (Chen et al.,

2013, Ebenstein et al., 2017, Anderson, 2020, Barreca, Neidell and Sanders, 2021, Ander-

sen et al., 2023). Even among these studies, the possibility of migratory responses cannot

be easily ruled out.1 By contrast, our approach employs quasi-experimental variation at the

daily level, which alleviates concerns about many forms of avoidance behavior.

Previous studies of temporary pollution spikes such as London’s Great Smog of 1952

have found that mortality effects can linger for weeks after the pollution event ends (Lo-

gan, 1953). Our study shows that this lingering effect persists even at moderate levels of

pollution, and to our knowledge we are the first to show that pollution exposure causes two

distinct mortality patterns: mortality displacement, where the cumulative mortality effect

quickly falls to zero, and accelerated aging, where the mortality effect grows with time.

Our findings underscore that great care must be taken when inferring longer-run mortality

effects from short-run estimates. Although lengthening the outcome window to multiple

years helps address this challenge, studies with short outcome windows of one year or

less make up the vast majority of papers employing quasi-experimental variation in air

pollution.2 Our methodology of incorporating detailed short-run mortality estimates into a

calibrated survival model provides a way to form long-run projections that appropriately

account for both mortality displacement and accelerated aging effects.

Our short-run analysis also makes important contributions to the literature on the health

effects of acute exposure to air pollution. A key advantage of our empirical approach is that

it harnesses variation across a large geographic area (the continental United States) and over

a long time period (nearly two decades). Our paper is thus the largest quasi-experimental

study of acute pollution exposure on mortality, encompassing 18 million deaths and en-

1For example, Barreca, Neidell and Sanders (2021) utilize repeated cross-section mortality data at the county-
year level. They rule out large changes in total population following a drop in air pollution, but differential migra-
tion remains a threat to validity.

2See, for example, Currie and Neidell (2005), Knittel, Miller and Sanders (2016), Schlenker and Walker (2016),
Deschênes, Greenstone and Shapiro (2017), Hollingsworth, Konisky and Zirogiannis (2021), Hollingsworth and
Rudik (2021); and Heo, Ito and Kotamarthi (2023). A handful of papers study the effect of early-life air pollution
exposure on later-life outcomes (e.g., Isen, Rossin-Slater and Walker, 2017, Voorheis, 2017, Colmer and Voorheis,
2020), including one study that considers mortality before age 55 (Arenberg and Neller, 2023). These studies do
not consider chronic exposure, however.
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abling us to decompose mortality effects with precision.3 Finally, ours is one of the first

quasi-experimental studies to estimate the mortality effects of acute exposure to SO2, a

pollutant that has declined substantially in the US over the past fifty years, but which re-

mains elevated in lower-income countries such as China and India.

The rest of the paper is organized as follows. Section 2 provides background on air pol-

lution and describes our data. Section 3 describes our short-run empirical strategy. Section

4 presents estimates of the short-run mortality effects of acute exposure to SO2 and other

air pollutants. Section 5 presents the dynamic model of health production, calibrates it, and

quantifies the long-run survival effects of chronic exposure. Section 6 concludes.

2. BACKGROUND AND DATA

2.1. Air pollution

Sulfur dioxide (SO2) is a major air pollutant produced primarily by the combustion of

coal and oil. In the US, the main source of SO2 emissions has historically been coal-burning

power plants. These emissions fell significantly during our sample period and in more

recent years (Figure A.1a), as a result of transitions to low-sulfur coal, increased use of

pollution control equipment, and greater reliance on alternative energy sources such as

natural gas.

Sulfur dioxide harms human health through two main channels. First, human clinical

trials have shown that direct exposure to SO2 impairs respiratory function, especially in

people with asthma (Agency for Toxic Substances and Disease Registry, 1998). Animal

experiments have also demonstrated that SO2 inhalation can cause brain damage (Sang

et al., 2010, Yao et al., 2015) and contribute to cardiac and mitochondrial dysfunction (Qin

et al., 2016). Second, SO2 transforms naturally into sulfate (SO2−
4 ) at a rate of several

percent per hour (Luria et al., 2001). Sulfates are a major component of fine particulate

matter (PM2.5), a catch-all term for particles whose diameter is 2.5 micrometers (µm) or

less. PM2.5 is thought to be particularly harmful to health because of its ability to cross the

blood-alveolar and blood-brain barriers. Prior quasi-experimental research has found causal

links between short-run exposure to PM2.5 and a number of health-related outcomes, such

3Deryugina et al. (2019) use a similar empirical approach, but focus on fine particulate matter rather than SO2,
consider a shorter and more recent time period (1999–2013), and are limited to a sample population over age 65.
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as short-run healthcare spending, hospitalizations, and mortality (e.g. Barwick et al., 2018,

Deryugina et al., 2019, Heo, Ito and Kotamarthi, 2023).

While research on the exact pathophysiological mechanisms underlying these health

effects continues, medical studies have documented significant associations between air

pollution and hypertension, diabetes, coronary artery calcification, and the progression of

chronic kidney disease, all of which are risk factors for cardiovascular disease (Rajagopalan

and Landrigan, 2021). Air pollution has also been linked to the initiation, promotion, and

progression phases of lung cancer (Turner et al., 2020, Hill et al., 2023). Once initiated,

lung cancer typically grows for over 10 years before it is diagnosed (Nadler and Zurbenko,

2014). Thus, while the quasi-experimental literature has consistently found significant ad-

verse effects of short-run exposure on short-run health, long-run health effects are probably

larger.

We measure air pollution using the EPA’s Air Quality System database, which provides

hourly data at the pollution-monitor level for criteria pollutants regulated by the EPA. The

extent of spatial and temporal coverage varies by pollutant. Our analysis focuses on SO2,

the most widely monitored air pollutant during our time frame. Short-run exposure to SO2

and its byproduct, sulfate, has been shown to have detrimental effects on human health,

as described above. In a secondary analysis, we also examine four other air pollutants that

have been monitored since the 1970s or the 1980s: nitrogen dioxide (NO2), total suspended

particulates (TSP), ozone (O3), and carbon monoxide (CO). TSP comprises all particulates

with diameters less than 100 µm, thus including PM2.5. Because PM2.5 was not consis-

tently monitored until the late 1990s, we cannot include it directly in our analysis.

Figure A.1 displays the population-weighted concentrations and the number of coun-

ties with at least one operational monitor over time for each pollutant. Except for O3, the

population-weighted means for all pollutants decline substantially during our sample pe-

riod. CO data are readily available since the mid-1970’s and maintain consistent coverage

of approximately 225 counties per year, while O3 data are unavailable prior to 1980. NO2

coverage is high for most of the 1970s but drops dramatically by the late 1980s, while data

on SO2 are available for a larger number of counties than most other pollutants throughout

our sample period. Each year during our sample period, at least 400 counties monitor SO2

concentrations, and about 50 percent of US individuals live in a county that monitors SO2.

While TSP monitors cover more counties than SO2 monitors, TSP monitors perform mea-
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surements less frequently and are more likely to be located in lower population areas. At

the county-day level, we have 62 percent fewer population-weighted observations of TSP

than of SO2.

Panel A of Table I shows county-level summary statistics for daily ambient pollution

concentrations during our 1972–1988 sample period. The average SO2 concentration is 9.0

parts per billion, with a standard deviation of 12.6. The average levels of NO2 and O3 are

higher, at about 21 and 26 parts per billion, respectively. The most prevalent pollutant is

CO, with an average concentration of 1.64 parts per million (1,640 parts per billion). We

are more than twice as likely to observe SO2 levels than any of the other four pollutants.

2.2. Mortality

We obtain daily death counts from the National Vital Statistics. These data are based on

death certificate records and include information on the cause of death and the county of

occurrence. We focus our analysis on the years 1972–1988, as this is the only timeframe

for which we have access to publicly available information on the exact date of death.4 We

calculate death rates by dividing death counts by annual population estimates provided by

the Surveillance, Epidemiology, and End Results (SEER) Program.

Figure A.2 reports annual death rates by age group and cause of death during our sample

time period. The infant mortality rate steadily declines over time, and by 1988 nearly equals

the average death rate for ages 45–64. Panel B of Table I summarizes daily mortality rates

for various subgroups over this time period. The all-age daily death rate is about 25 per

million. The rate is higher for infants (33 deaths per million), and much higher for those

over age 85 (443 deaths per million).

We classify causes of death into four main categories: cardiovascular, cancer, external,

and other. Panel B of Table I reports that cardiovascular disease is the leading cause of

death during our time period, accounting for nearly half of all deaths in our sample (12

daily deaths per million). Cancer deaths make up slightly more than twenty percent of

overall mortality (5 deaths per million). External causes of deaths are responsible for about

eight percent of all deaths and include car accidents, poisonings, suicides, and other causes

4The exact date of death is unavailable prior to 1972, and is available after 1988 only in the Research Data
Center of the National Center of Health Statistics.
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not originating in the body. We group the remaining twenty percent of deaths, which in-

cludes deaths from respiratory illness, into the “other” category. Our secondary analyses

also report estimates for subcategories of cardiovascular and other disease deaths.

2.3. Wind and weather

Our empirical strategy is motivated by the well-known fact that wind currents carry

air pollution over long distances. For example, Environmental Protection Agency (2004)

studies sources of pollution in thirteen large US cities and finds that regional contributions

to sulfate substantially exceed local contributions in nearly all cases. In theory, one could

use predictions from an atmospheric model of wind transport as an instrument for changes

in local pollution levels. In practice, doing so at the daily level is computationally intensive

and requires comprehensive data on emissions, which are largely unavailable during our

study period. Instead, we follow Deryugina et al. (2019) and instrument for changes in SO2

using changes in wind direction. Our key identifying assumption is that, conditional on

other climatic variables and comprehensive fixed effects, wind direction affects mortality

only through its effects on air pollution.

We obtain wind speed and wind direction data from a 6-hour reanalysis dataset pub-

lished by the Japan Meteorological Agency (JMA). The data consist of vector pairs, one

for the east-west wind direction (u-component) and one for the north-south wind direction

(v-component), reported in 6-hour intervals on a grid with a resolution of 1.25 degrees

(≈86 miles).5 We first interpolate between the grid points to calculate the 6-hour u- and v-

components at the centroid of each county. We then average the u- and v-components within

a county-day to match the frequency of our mortality data. Finally, we use trigonometry to

convert the average u- and v-components into daily wind direction and wind speed.

We obtain temperature and precipitation data from Schlenker and Roberts (2009), who

construct a gridded weather dataset at the daily level by combining monthly data from

the PRISM Climate Group with daily data from weather stations. The final dataset spans

the years 1972–1988 and includes total daily precipitation and daily maximum and daily

5These data are available starting in 1958 from http://rda.ucar.edu/datasets/ds628.0/. The JMA’s relatively
coarse grid is an appealing feature: as we explain in Section 3.2, regional wind patterns are a better source of
variation than local differences in wind direction, which may produce undesirable measurement error.
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minimum temperatures for each point on a 2.5-by-2.5 mile grid covering the contiguous

US.6 We aggregate these data to the county-day level by averaging the daily measures

across all grid points located in a particular county.

3. EMPIRICAL STRATEGY

3.1. Estimating equations

Our first objective is to estimate the causal effect of acute (1-day) exposure to SO2 on

short-run mortality. We model this relationship using the following regression:

Y kcd = βkSO2cd +Xk
cd

′
δ + αcm + αmy + εcd (1)

where Y kcd is the cumulative mortality rate in county c in the k days following exposure on

day d (including same-day mortality). The parameter of interest is βk, the coefficient on

daily SO2 levels. Similar to Deryugina et al. (2019), the controls Xk
cd include contempora-

neous and k− 1 leads of our weather variables (described below) in order to ensure that βk

is not capturing the effects of weather conditions during the outcome window.

Equation (1) includes fixed effects for county-by-calendar-month (αcm) and calendar-

month-by-year (αmy), hereafter referred to as “county-by-month” and “month-by-year”.

The county-by-month fixed effects control for geographic and geography-specific seasonal

differences in mortality, air pollution, and wind patterns. The month-by-year fixed effects

control for common time-varying shocks, such as those induced by environmental policy

changes during our study period. Standard errors are clustered by county, and the regression

is weighted by the relevant county-year population.

Our main specification controls for daily maximum temperature, precipitation, and wind

speed. We control for maximum temperature using a set of indicators based on each

county’s temperature distribution. The literature on temperature and mortality generally

finds that it is extreme temperatures that matter for the mortality rate (e.g., Barreca et al.,

2016) and that the average climate of a county determines which temperatures are extreme

in this sense (e.g., Heutel, Miller and Molitor, 2021). We therefore generate nine indica-

tors for maximum temperatures falling into intervals whose minimum is defined by the

6See http://www.prism.oregonstate.edu/ for the original PRISM dataset and http://www.wolfram-schlenker.
com/ for the daily data.
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following percentile cutoffs: 0, 1, 5, 10, 25, 75, 90, 95, and 99. We determine the maximum

temperature range corresponding to each interval using each county’s in-sample tempera-

ture distribution.

Guided by the principle of controlling for extremes, we control for daily precipitation

by including four indicators for whether precipitation is below the 75th percentile for that

county (which in most counties corresponds to very little or no precipitation), between

the 75th and 95th percentiles, between the 95th and 99th percentiles, or above the 99th

percentile. We control for daily average wind speed with six indicators whose minimum

is defined by the following county-specific percentile cutoffs: 0, 25, 75, 90, 95, and 99.

Finally, we also control for the set of all possible interactions of these atmospheric controls,

yielding 201 different temperature-precipitation-wind-speed combinations.7

OLS estimates of Equation (1) are susceptible to bias because SO2 exposure is not ran-

dom and is measured with error, as monitor-level fluctuations are a noisy measure of pop-

ulation exposure. We therefore instrument for daily SO2 using contemporaneous wind di-

rection in the county, allowing the effect of wind direction on SO2 to vary by geographic

group g. The regression specification for our first stage is:

SO2cd =
50∑
g=1

fg(θcd) +Xk
cd

′
δ + αcm + αmy + εcd (2)

where:

fg(θcd) = γ1
g1[Gc = g]× sin (θcd) + γ2

g1[Gc = g]× sin (θcd/2)

The indicator function 1[Gc = g] is equal to 1 if county c is a member of group g and 0

otherwise. The variable θcd is the local wind direction, measured in radians. The excluded

instruments are the 100 regressors formed by the interaction of group indicators, 1[Gc =

g], with measures of contemporaneous wind direction, sin (θcd) and sin (θcd/2). As we

demonstrate in Section 4.3, our results are robust to alternative ways of parameterizing

fg(θcd).

7The number of possible combinations is larger, but we do not observe all of them in our data.
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The wind direction instrument θcd in Equation (2) varies at the county level. We allow

its effect to vary across different geographic groups—as captured by the parameters γ1
g and

γ2
g—because we expect, for example, a westerly wind blowing clean ocean air into Califor-

nia to have a different effect on pollution levels than a westerly wind blowing air pollutants

into a community located due east of Chicago. We construct these groups using a k-means

clustering algorithm that classifies all SO2 pollution monitors into 50 spatial groups based

on monitor location.8 To account for autocorrelation in wind direction, which could cause

our estimate of βk to additionally reflect the effects of past or future SO2 exposure, we

include two leads and two lags of wind direction interacted with geographic indicators in

the controls Xk
cd. Thus, contemporaneous wind direction is an excluded instrument, while

past and future wind directions are included instruments.

3.2. Identifying variation

Ambient air pollution comes from both local and distant sources. For example, a city’s

air pollution levels are influenced by nearby vehicle exhaust as well as by emissions from

fires and power plants located hundreds of miles away. The source location matters because

local emissions disperse unevenly across the immediate vicinity whereas emissions from a

distant source disperse uniformly across that same vicinity. Because there are relatively few

pollution monitors in our sample, using variation from local pollution sources to estimate

the county-level effects of pollution exposure will lead to measurement error bias.9 Thus,

our first-stage Equation (2) allows the effect of wind direction on air pollution levels to

vary across geographic groups (regions) but not within a group. (The instrument itself still

varies at the county level within the geographic group.) This restriction avoids using local

variation in air pollution produced by sources located inside the geographic group. Local

8The inputs into the k-means clustering algorithm are monitor latitude and longitude and the desired number
of groups (50). If monitors in the same county are assigned to different groups, we assign the larger integer
group number to the county, which is effectively random assignment. The locations of in-sample SO2 monitors
and geographic groups are displayed in Figure S.1. On average, each geographic group encompasses 57 SO2

monitors and 12 counties.
9Consider a county with one air pollution monitor that is placed due west of a major power plant. Suppose that

this power plant is located in the center of the county and is the only source of pollution. The monitor will register
high pollution readings when the wind blows from the east, and low levels when it blows from the west. However,
wind direction in this example has no effect on average pollution levels in the county.
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variation will have differing effects on the exposure levels of nearby people, depending on

their location relative to the source, resulting in undesirable measurement error. Instead,

our first stage favors variation in air pollution that affects the entire geographic group in a

similar manner. In addition, we employ a spatially coarse measure of wind direction as our

instrument in order to isolate variation in air pollution caused by shifts in regional, rather

than local, wind patterns.

Figure 1 illustrates our first-stage variation, using the Greater Philadelphia and Southern

California geographic groups as examples. The black dots on the maps show the locations

of the SO2 monitors in these two areas. The plots on the right show the group-specific

relationships between daily average wind direction and SO2.10 Each specification controls

for maximum temperature, precipitation, wind speed, and county-by-month and month-by-

year fixed effects in the same way we control for them in our main specification. To show

the wind-SO2 relationship flexibly, we group wind direction into 36 10-degree bins, which

necessitates estimating this modified first-stage equation separately for each geographic

group. The plots also show the relationship based on the sine function specification, which

for consistency we also estimate separately for each group. For the main estimates we

report later in our paper, we estimate our first and second stages jointly using two-stage

least squares.

Figure 1 reveals a strong first-stage relationship between wind direction and SO2 levels.

In the Greater Philadelphia area, pollution levels are highest when the wind blows from

the west-southwest direction, and lowest when the wind blows from the east-southeast

direction, where the Atlantic Ocean lies. This pattern differs in the Southern California

area, where SO2 levels are highest when the wind blows from the east, a densely populated

area, and lowest when the wind blows from the south-southwest direction, where the Pacific

Ocean lies. Figure 1 shows that a change in wind direction can change SO2 levels by 3–4

ppb, equal to 30–40 percent of the national mean during this time period (Table I).

We interpret our IV estimate as a weighted average of treatment effects among compliers,

where weights are larger for compliers with larger first stages (Angrist, Graddy and Imbens,

2000). Figure A.3 shows the geographic distribution of the strength of the first stage, as

measured by the difference in predicted SO2 levels between the most and least polluting

10Figure S.2 shows corresponding plots for all 50 geographic groups.
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wind directions.11 The areas with the largest variation (4+ ppb) are located primarily in

the Midwest and the Northeast, although there are fairly strong compliers (variation of 2–4

ppb) throughout the country. The weakest compliers have variation of <1 ppb and thus

contribute relatively little to our main estimates.

Table A.1 reports an analysis of complier characteristics where we regress county-level

measures obtained from the Regional Economic Information System (REIS) dataset on the

strength of the first stage. The unit of observation is a county-year, and our regressions

include year fixed effects. The strength of the first stage is not significantly associated with

population or the percent of residents over age 65. Counties with stronger first stages have a

smaller share of residents who are Black, have higher per-capita income, receive higher per-

capita transfers, and have a lower employment rate, but the magnitudes of these coefficients

are generally small (e.g., a $90 difference in per-capita income for each 1 ppb difference

in the first stage). The largest relative differences arise among the population share that is

Black (1.4 percentage points lower Black share per 1 ppb SO2, relative to a mean of 9.2

percent) and mean SO2 concentrations (1.4 ppb higher relative to a mean of 7.4 ppb). Along

other dimensions, the complier group is not notably different from the US population.

Our empirical approach permits us to instrument for multiple pollutants simultaneously

because the relationship between wind direction and pollution levels within and across re-

gions is pollutant-specific.12 In a later analysis, we investigate the sensitivity of our main

estimate to controlling for the four other pollutants measured during our sample time pe-

riod: NO2, CO, O3, and TSP. Including these additional controls causes our sample size to

fall by 90 percent or more because these other pollutants are monitored less frequently than

SO2 during this time period. We therefore do not include them in our primary specification.

4. SHORT-RUN EMPIRICAL RESULTS

4.1. Mortality by age and cause

We begin by estimating the effect of daily SO2 exposure on same-day mortality. Table

II presents OLS and IV estimates of Equation (1). Column (1) reports that a 1-day, 1-ppb

11For each geographic group g, we calculate γ̂1g sin (θ) + γ̂2g sin (θ/2) for θ ∈ [0,2π) and take the difference
between the maximum and minimum values.

12For example, manufacturing plants and landfills often emit fine particulate matter, but little to no SO2.
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increase in SO2 is associated with a same-day mortality increase of 0.008 deaths per mil-

lion, about ten times smaller than the corresponding IV estimate of 0.08 deaths per million

reported in Column (2). This downward bias for OLS is common in quasi-experimental

studies of air pollution, and is often hypothesized to be at least partly due to measurement

error in pollution exposure (Deryugina et al., 2019, Alexander and Schwandt, 2022).

Figure 2 shows the IV estimates of the effects of a 1-day, 1-ppb increase in SO2 levels

on mortality up to one month following exposure. The first blue point depicts the estimate

from Column (2) of Table II. If short-term mortality displacement were the predominant

driver of this 1-day mortality effect, the cumulative mortality effect would decline over

time, potentially all the way to zero. Instead, the estimated effect increases steadily to

0.10 deaths per million one week after exposure and to 0.18 deaths per million one month

after exposure. Figure A.4 presents cumulative mortality estimates up to 90 days following

exposure. We can strongly reject an estimate of 0 throughout this 90-day follow-up period.

While the estimated effect stabilizes after about 35 days, the standard errors grow steadily

with the length of the outcome window, limiting our ability to obtain precise estimates

beyond a one-month window.

Figure 3 shows how our estimates vary by cause of death as reported on death certificates.

The increase in 1-day mortality is split roughly equally among cardiovascular disease, can-

cer, and other diseases. As we consider longer time horizons, however, the estimated effect

on cancer-related mortality falls, implying substantial short-run mortality displacement.

One month after exposure, the cancer estimate is small and statistically insignificant. We

therefore cannot reject the null hypothesis that all cancer-related deaths would have oc-

curred within one month even absent exposure to SO2. By contrast, the death rate estimates

for cardiovascular and other diseases increase with the time horizon—more than tripling

over one month—implying that acute SO2 exposure continues to have lethal effects even

after exposure has ended. For each of these cause-of-death categories, we can strongly

reject equality between the 1-day and the 28-day estimates (p<0.0001).

Figure 3 also shows a small but statistically significant increase in same-day external

deaths (0.005 deaths per million), although this estimate becomes statistically insignificant

when measured over longer time horizons. These effects may be due to negative effects of

pollution on cognitive function (Crüts et al., 2008, Fonken et al., 2011, Bishop, Ketcham
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and Kuminoff, 2023); for example, recent work has suggested that pollution exposure in-

creases vehicle fatalities through the cognitive function channel (Burton and Roach, 2023).

Figure A.5 shows cause-specific estimates of the mortality effect of SO2 over time when

deaths from cardiovascular and other diseases are disaggregated into 5 and 21 different

subcategories, respectively. Three of the five subcategories of cardiovascular disease show

significant same-day and monthly mortality increases. We also find strong and growing

effects for deaths from chronic obstructive pulmonary disease (COPD), pneumonia and in-

fluenza, and other respiratory diseases, which collectively account for over 99 percent of all

deaths from respiratory illness (Table S.3). By contrast, we find no significant monthly ef-

fects for conditions not previously linked to air pollution exposure, such as stomach ulcers,

Parkinson’s disease, appendicitis, and chronic liver diseases.13

Figure 4 shows how the 1-day mortality effect varies by age group. Panel (a) shows

the absolute magnitude of the effect (in deaths per million), while Panel (b) reports it as

a percent of the average 1-day mortality for that age group. We fail to detect significant

mortality increases for the two youngest age groups (covering ages 0–19). For older ages,

our estimates are statistically significant and range from 0.016 deaths per million for 20–44-

year-olds to 2.3 deaths per million for 85+ year-olds (Figure 4a). When expressed in relative

terms, estimates vary little with age. The smallest relative effect (0.18 percent of daily

mortality) is found among 1–19 year-olds, while the largest relative effect (0.51 percent of

daily mortality) is found among 85+ year-olds. However, we cannot reject that the relative

effects are equal to each other for most age group pairs.

Age-specific estimates for outcome windows up to one month (28 days) following expo-

sure are reported in Figure A.6 and Table A.2. For ages 65 and over, the monthly estimates

are at least twice as large as the 1-day estimates, suggesting that any short-run mortality

displacement among these groups of individuals is more than offset by delayed effects of

acute exposure. For ages 20 to 64, however, the monthly estimates are smaller than the

1-day estimates and are statistically insignificant, suggesting that acute pollution exposure

among young and middle-aged adults causes increased mortality only among those indi-

viduals who are very frail and would have died that month even absent that exposure. By

13Interestingly, we estimate a significant effect of SO2 on deaths from meningitis. Although not obviously
pollution-related, prior studies have found that air pollution weakens local immunity of the pharynx, leading to
increased susceptibility to meningitis (Michele et al., 2006, Jusot et al., 2017, Shears et al., 2020).
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contrast, older adults who are killed by acute air pollution exposure have longer counter-

factual lifespans.

In relative terms, our estimates for older age groups are similar to corresponding es-

timates reported in Deryugina et al. (2019), who investigate the effect of acute exposure

to PM2.5 on 3-day mortality. To the best of our knowledge, no prior quasi-experimental

estimates exist for the effect of air pollution on short-run mortality for ages 1–64. For in-

fant mortality, the two most comparable studies are Currie and Neidell (2005) and Knittel,

Miller and Sanders (2016), who estimate the effect of PM10 (coarse particulate matter with

diameter less than 10 µm) on weekly infant mortality. Currie and Neidell (2005) find null

effects, while Knittel, Miller and Sanders (2016) estimate significant effects. Our estimates

are weakly consistent with the mixed findings from these two studies: while we find a null

(albeit noisy) effect of acute exposure on 1-day and monthly infant mortality, our estimates

for 3-day and weekly infant mortality are statistically significant (Table A.2).

4.2. Other air pollutants

We have thus far interpreted our estimates as the causal effects of exposure to SO2. It is

possible, however, that other harmful air pollutants are co-transported with SO2. A second,

related issue is that SO2 transforms rapidly into sulfate (SO2−
4 ), a major component of

PM2.5. Because the transformation occurs at a rate of several percent per hour, our estimates

may reflect the mortality effects of exposure to SO2 as well as sulfate recently derived

from SO2. We investigate these possibilities using two different methods. The first method

controls directly for other air pollutants, instrumenting separately for each one. The second

models the atmospheric transport of SO2, NO2, and PM2.5, as well as the conversion of

SO2 and NO2 into PM2.5, so that we can gauge the potential contributions of these different

phenomena to our estimates.

The air pollutants we observe in our data are produced by a variety of sources in different

geographic locations, are carried differently by the wind, and exhibit different atmospheric

chemistry patterns. This variation can be captured by our instruments, which vary by loca-

tion and with wind direction. Unfortunately, including multiple pollutants in our regression

significantly reduces our sample size because most non-SO2 pollutants are sparsely mea-

sured during our sample period. We therefore include multiple pollutants in our empirical
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model only in this secondary analysis, focusing on two subsamples. The first one includes

measures of TSP, NO2, O3, and CO in addition to SO2, resulting in a sample size that is

less than five percent of the size of our main sample. The second subsample is larger but

includes only SO2 and TSP, our best proxy for PM2.5.

Panels A and B of Table III show the effect of adding pollutants to our main regression

specification in each subsample. For reference, Column (1) in Panel A reports that a 1-ppb

increase in SO2 raises 1-day mortality by 0.084 deaths per million in the first, smallest sub-

sample. The magnitude of this effect decreases by nearly 30 percent in Column (2), which

additionally controls for TSP, but does not change in Column (3), which controls for NO2,

CO, and O3. Column (4) controls for all these pollutants simultaneously and again shows

a meaningful decrease in the magnitude of the coefficient on SO2, suggesting that some of

the estimated effect for SO2 reported in Column (1) is driven by particulate matter.14 For

completeness, Table A.4 shows estimates for a third subsample that is restricted to obser-

vations that have pollution readings for SO2, NO2, O3, and CO (but not necessarily TSP),

which yields almost four times the number of observations as Panel A of Table III. The

SO2 coefficient remains stable across all possible combinations of these other pollutants,

further confirming that only the inclusion of TSP affects its magnitude.

Panel B shows the effect of controlling for TSP in a larger subsample that conditions

only on observing SO2 and TSP. Here, the coefficient on SO2 falls by 55 percent after

controlling for TSP. Likewise, the coefficient on TSP falls by 30 percent after controlling

for SO2.15 Thus, we conclude that about half of the SO2 mortality effect we estimate is

potentially driven by particulate matter that was either co-transported with or formed from

SO2.

Further interpreting the estimates in Table III is difficult because it is not possible to

distinguish “primary” TSP that is directly emitted by a source and then co-transported with

SO2 from “secondary” TSP that is formed from SO2. This distinction is policy relevant:

reducing SO2 emissions necessarily reduces secondary TSP, but may have little or no effect

on primary TSP. We therefore turn to simulations from the Intervention Model for Air

14National means for all the pollutants are available in Table I.
15We observe a similar pattern for longer outcome windows: the coefficient estimates for SO2 and TSP fall by

30–50 percent when both pollutants are included in the regression, but always remain statistically significant.
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Pollution (InMAP), which models how emissions of SO2, PM2.5 (a component of TSP),

and NO2 are transported across the US.16 Importantly, InMAP simulates the conversion

of SO2 and NO2 into particulate matter, allowing us to separately measure primary PM2.5

and secondary PM2.5 and to quantify the amount of secondary PM2.5 formed specifically

from SO2. We use the 1990 National Emissions Inventory (NEI) to determine emissions,

the earliest year for which appropriate data are available.17 We report two sets of results,

one based on emissions from coal-fired power plants, the largest source of SO2 emissions

in the NEI, and a second where we additionally include emissions from all sources located

in a county with at least one coal-fired power plant. The second scenario thus includes air

pollutants that are co-transported, but not necessarily co-emitted, with SO2.

We use the InMAP simulations to calculate the equilibrium ratio of ambient PM2.5 to

ambient SO2, in µg/m3 per ppb.18 That ratio is approximately 2.3 when considering only

coal-fired power plant emissions, indicating that each transported ppb of SO2 is accompa-

nied by 2.3 µg/m3 of PM2.5. Over 93 percent of this PM2.5 is sulfate, a secondary pollu-

tant derived from SO2. The second scenario, which includes emissions from all pollution

sources located in counties with coal-fired power plants, yields a slightly higher ratio of

2.5. Here, over 70 percent of PM2.5 is sulfate. Thus, even if our mortality estimates in-

clude the effects of exposure to particulate matter, these simulations suggest that the large

majority of that particulate matter originates from SO2 and would therefore fall follow-

ing reductions in SO2 emissions. We can also use these results to compute bounds for our

estimates. Under the extreme assumption that our mortality estimates are entirely caused

by fine particulate matter rather than SO2, dividing them by 2.5 would yield the mortality

effect of one additional µg/m3 of PM2.5.

16The InMAP model is available for download from https://github.com/spatialmodel/inmap/releases/tag/v1.9.6.
The evaluation data used in our simulations are from Tessum et al. (2019).

17These data are available from https://gaftp.epa.gov/air/nei/nei_criteria_summaries/
1990criteriasummaryfiles/.

18InMAP reports all pollutants in units of µg/m3. At standard temperature (15 degrees Celsius), 1 ppb of SO2

corresponds to about 2.62 µg/m3.
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4.3. Robustness

Our key identifying assumption is that changes in wind direction are unrelated to mor-

tality except through their effects on pollution levels. This assumption would be violated if

wind direction is correlated with unobserved weather patterns that cause mortality. While

impossible to test directly, we can probe the plausibility of our identifying assumption by

assessing the sensitivity of our estimates to different ways of controlling for temperature,

precipitation, and wind speed, and to different ways of specifying fixed effects.

Columns (2)–(5) of Table II shows the estimated effect of SO2 on same-day mortality for

different sets of weather controls. Column (2) is our baseline estimate. Column (3) reports

the estimate from a specification that also includes bins of minimum temperature—with

thresholds defined as for maximum temperature—in our weather interaction indicators.

In Column (4), we parameterize the weather controls as done in Deryugina et al. (2019).

Specifically, we control for all possible interactions of minimum temperatures (specified

as indicators for minimum temperatures falling into 3-degree Celsius bins, with outer

bins defined by temperatures below -15 Celsius or above 30 Celsius); maximum tem-

peratures (specified in the same way); ten deciles of wind speed; and ten deciles of pre-

cipitation. This flexible definition of weather gives us 28,899 possible weather conditions

(17× 17× 10× 10− 1), although only about one-third of these combinations exists in our

data. Finally, Column (5) reports estimates for a specification with no weather controls at

all. Our estimate remains stable across all specifications, which minimizes concerns about

omitted variable bias from unobserved weather phenomena.

Table A.5 investigates the sensitivity of our estimates to including alternative sets of fixed

effects. Column (1) reproduces our baseline estimate, while Columns (2)–(6) present five

reasonable alternatives, including variants that control for state-by-calendar-month-by-year

(Column 3) or county-by-year (Column 4) fixed effects. These have little effect on the size

of our estimate, suggesting that seasonal variation in the climate-mortality relationship and

unobserved variables that vary across locations do not bias our estimates. Table A.6 shows

that clustering standard errors at larger geographic levels such as state or geographic group

has little effect on the size of our standard errors.

Our main specification includes two leads and two lags of our instruments in order to

account for autocorrelation in wind direction, which might otherwise cause an upward bias
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in our estimates. Table A.7 shows that our estimates are insensitive to including more or

fewer leads and lags.

We interpret our IV estimate as a weighted average treatment effect where the weights

are non-negative, which requires monotonicity of air pollution in the instruments (Angrist,

Graddy and Imbens, 2000). In other words, if the instruments increase SO2 levels in one

county, then SO2 levels in other counties assigned to the same geographic group cannot

fall. This assumption would be violated if the relationship between wind direction and

SO2 varies across counties located within the same group. We investigate this possibility

with two alternative specifications that allow the effect of wind direction on SO2 to vary

over either a larger or smaller geographic area. Columns (2)–(3) of Table A.8 show that

these alternatives produce estimates similar to our main estimate, given in Column (1),

suggesting that violations of the monotonicity assumption are not a significant concern in

our setting.

While acute exposure produces a growing effect on all-cause mortality, Figure 3 reveals

short-term mortality displacement for deaths where cancer was listed as the underlying

cause. An alternative explanation for this disparity in trends is composition bias, which

could occur if cancer-related deaths that occur weeks after exposure are misattributed to

other causes like cardiovascular disease. To investigate this possibility, we estimate the

effect of acute exposure on deaths where cancer was listed as the underlying cause of death

or as a secondary (contributing) cause of death. Those estimates, shown in Figure A.7, are

very similar to our main estimates, indicating that misattribution in the underlying cause of

death does not explain our finding of short-run mortality displacement.

Our reported F -statistics in Table II exceed 500 and our 2SLS estimates differ signifi-

cantly from OLS estimates, indicating that our estimates do not suffer from weak instru-

ment bias.19 Nevertheless, we conduct two additional checks to assess the quality of our

instruments. First, Table A.9 shows that our 2SLS estimates are similar to estimates ob-

tained from LIML, which is approximately median unbiased even in the presence of many

weak instruments. Second, we conduct a placebo exercise where we generate a set of ran-

19The F -statistics are computed assuming errors are homoskedastic, which means they can be compared to
the well-known critical values published in Stock and Yogo (2005). Heteroskedasticity-robust F -statistics also lie
well above conventional thresholds. The weak-instrument test of Olea and Pflueger (2013) is not computationally
feasible in our setting.
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dom wind directions and use those in place of the actual wind direction (Columns 1–3 of

Table A.10). The first-stage F -statistics for those placebo exercises never exceed 2.0, which

demonstrates that our wind direction instrument picks up meaningful rather than spurious

variation in SO2 levels.

Column (4) of Table A.10 presents the results of a falsification test that regresses 1-day

mortality on future SO2 levels, yielding a small and statistically insignificant coefficient.

These results provide evidence that our inference methodology does not significantly un-

derstate the magnitude of our standard errors and further reinforces the credibility of our

identification strategy.

5. LONG-RUN SURVIVAL

5.1. Framework

Our framework for quantifying the long-run survival effects of chronic exposure to air

pollution is based on a dynamic production model of health originally developed by Lleras-

Muney and Moreau (2022). Let Hit denote the health capital of individual i ∈ {1, ...,N}
at time t ∈ {0, ..., T}. At birth, an individual is endowed with a stock of initial health, H∗i0,

which is drawn randomly from a normal distribution. This health stock evolves over the

individual’s lifetime according to the following formula:

Hit =Hi,t−1 − d(t) + I + εit (3)

where:

Hi0 =H∗i0 ∼N(µH , σH),

d(t) = δtα,

εit ∼N(0, σε)

The health stock depreciates at a rate, d(t), which increases with the age of the individual.

It is replenished at a constant rate, I , which captures time-invariant factors such as early-

life parental investment or lifetime health habits, and varies with an iid health shock, εit.

Death occurs when the individual’s health stock falls below a critical threshold, H, and is
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denoted by the indicator variable Dit, where:

Di0 = 1 [Hi0 <H] ,

Dit = 1
[
Hit <H

∣∣Di,t−1 = 0
]
, t > 0

The model is fully characterized by seven parameters: {α, δ, I, µH , σH , σe,H}.20

Cohort mortality can be calculated to an arbitrary degree of precision by simulating the

model given by Equation (3) for a sufficiently large number of individuals. The mortality

rate at time t, Mt, is equal to the number of individuals in the simulation who died in period

t divided by the number of individuals alive at the beginning of period t. Survival at time t

can then be calculated from mortality:

S1 = 1−M0,

St = St−1 (1−Mt−1) , t > 1

This parsimonious model is well-suited to our long-run survival analysis. Our objective is

to project long-run survival, and Lleras-Muney and Moreau (2022) demonstrate that their

model’s fit is on par with the best models used by demographers across a wide range of

population survival curves. The model can also separately capture the mortality displace-

ment and accelerated aging effects we observed in our empirical analysis (Figure 3). As

we explain below, these two effects have very different implications for long-run survival.

Finally, calibrating the model requires data only on mortality, unlike other models such

as Grossman (1972), which require additional information on variables such as incomes,

prices, and healthcare utilization, and on how these change with air pollution exposure.

The health effects of pollution exposure can be modeled as temporary or permanent

changes to one or more model parameters. We focus on changes to the death threshold, H,

which produces mortality displacement, and the depreciation parameters, α and δ, which

20The model can be extended to incorporate external causes of death such as car accidents by including two
additional parameters specifying the age of onset and the severity of these external causes (Lleras-Muney and
Moreau, 2022). However, this extension is unnecessary for our analysis, which focuses on deaths from biological
(internal) causes.
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govern the aging process.21 Changes to the depreciation parameters will result in larger

mortality effects among older individuals than younger ones, consistent with the patterns

from our empirical analysis (Figure 4), because depreciation is a power function: d(t) =

δtα.

A temporary elevation in the death threshold leads to increased mortality among frail

individuals who are closest to death but has no effect on the health of those still alive. When

the threshold reverts to its initial value, mortality rates decline due to the lack of surviving

individuals with health capital values near the newly lowered threshold. Consequently, a

temporary rise in the death threshold leads to short-run mortality displacement without any

longer-lasting effects.

In contrast, a temporary increase in the depreciation rate, d(t), affects the health capital

of all individuals—both healthy and ill—leading to persistent changes in mortality. This

increase causes an immediate rise in mortality rates among frail individuals whose health

capital falls below the death threshold as a result of increased depreciation. However, be-

cause the health capital of the entire population has been reduced, and future health capital

is a function of past health capital, mortality rates remain elevated even after d(t) reverts to

its original path.

To incorporate our empirical estimates into the model, we assume that the effect of pol-

lution exposure on model parameters depends only on current exposure. This assumption

implies that exposure alters the death threshold and depreciation rate parameters by the

same amount for the old and the young, and that those changes are independent of exposure

history. Thus, observed differences in the mortality effects of exposure are driven solely by

differences in pre-existing stocks of health capital and by the functional form of d(t). This

assumption is supported by medical research, which has found that even though the health

consequences of pollution exposure might not be immediately apparent in healthy adults,

the underlying biological effects are consistent across the population.22 Indeed, our mod-

21While exposure could in principle change the level of investment, I , this effect would result in high and
persistent mortality increases for both old and young. Because the mortality effects we observe for younger in-
dividuals are small and disappear within one month (Table A.2), we rule out I as a possibility. Exposure could
also alter the variance of the iid health shock, εit. We rule out this possibility because it implausibly implies that
a 1-day increase in pollution exposure would produce health benefits for half of the population.

22For example, ambient air pollution exposure produces a number of latent pathophysiological responses, such
as increased oxidative stress and inflammation, in both healthy and unhealthy individuals (Brook et al., 2010).
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eling strategy embeds a similar mechanism: while we model exposure as having a uniform

effect on everyone’s (unobservable) depreciation rate parameter, exposure nevertheless pro-

duces disparate mortality effects because a fixed increase in that parameter reduces the

health stock more for older individuals than for younger individuals, and raises short-run

mortality only among those who are old or frail.

We provide two pieces of empirical support for our assumption that the effect of expo-

sure on model parameters depends only on current exposure. First, the assumption yields

the testable implication that calibrated parameter values from one age group can be used

to form accurate mortality predictions for any other age group, regardless of differences

in their exposure histories. We confirm this implication in the “leave-one-out” exercise

presented in Section 5.3. Second, Section 5.4 shows that the model’s one-month chronic

exposure projections are consistent with longer-run exposure estimates from our empirical

model and with a three-year estimate from Anderson (2020).

Lleras-Muney and Moreau (2022) do not model optimization behavior, which is consis-

tent with our use of daily-level IV estimates to calibrate the effect of air pollution exposure

on model parameters: behavioral adjustments such as buying an air purifier or relocating

are unlikely responses to idiosyncratic changes in daily air pollution levels. The absence

of endogenous responses to exposure means that our survival projections should be in-

terpreted as holding behavior fixed, which is the relevant figure for quantifying the gross

benefits associated with pollution reduction (Graff Zivin and Neidell, 2013, Currie et al.,

2014). We discuss accounting for avoidance and mitigation behaviors at the end of Section

5.4.

Our analysis proceeds as follows. First, we calibrate the baseline model parameters using

a period life table from 1972, the beginning of our sample period. Second, we downscale

this annual model to the daily level and solve for the change in parameter values required to

match our IV estimates of the same-day effect of acute pollution exposure. We assess model

performance by comparing its short-run (up to one month) predictions to IV estimates not

used for the calibration. Finally, we use the model to project the long-run effects of chronic

changes in pollution exposure on survival. We explain these steps in more detail below.

In a randomized, double-blind experiment, Li et al. (2017) exposed healthy young adults to either filtered air
or real-world PM2.5 concentrations. Higher PM2.5 exposure led to increased levels of stress hormones, insulin
resistance, inflammatory markers, and blood pressure.
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5.2. Calibration

5.2.1. Baseline parameters

The dynamic production model of health given by Equation (3) depends on seven param-

eters: {α, δ, I, σe, µH , σH ,H}. To achieve identification (i.e., to ensure a unique solution),

we follow Lleras-Muney and Moreau (2022) and normalize two parameters: H = 0 and

σH = 1. We calibrate the five remaining parameters using simulated method of moments.

Specifically, we use the Nelder-Meader method to solve numerically for the parameter val-

ues that minimize the squared distance between the model’s predicted age-specific survival

and US population survival in 1972, the first year of our sample period.

Lleras-Muney and Moreau (2022) model mortality at the annual level. To incorporate

our IV estimates with maximum accuracy, however, we must downscale the model to the

daily level. Our daily-level IV estimates average about 0.1 deaths per million for a 1-unit

change in SO2 (Table II). To accurately measure mortality changes at that level of granular-

ity, the model must include many millions of individuals. However, calibrating the baseline

parameters requires solving an optimization problem over the entire lifetime, which is com-

putationally infeasible at the daily level when N is large.23 We therefore proceed in three

steps.

First, we calibrate the baseline model using annual survival data and N = 1,000,000

agents. Second, we recalibrate the baseline model using daily survival data and N =

100,000 agents, employing (scaled) estimates from the annual calibration as our starting

values.24 Third, we simulate the baseline model for a population of N = 20,000,000 indi-

viduals, using parameter estimates from the second (daily-level) calibration. This third step

provides the high-resolution model estimates of population health capital that we combine

23If the maximum lifespan is 110 years, then the number of periods is T = 110×365 = 40,150 days. Simulat-
ing a population of N = 10,000,000 individuals thus produces 401.5 billion health capital values (3.2 terabytes,
if each value is an 8-byte number). Simulating a single population of this size on a large server requires several
hours of runtime, and the Nelder-Mead method requires simulating the population hundreds of times to converge
to a solution.

24We obtain the starting values by dividing the annual estimates of I and δ by 365, and of σe by
√

365. We do
not rescale µH or α. While these starting values provide a good guess for the solution, the model’s (nonlinear)
dependence on t causes the guess to be suboptimal, hence the need for recalibration. In the special case where
α = 1, one can show that if a year is partitioned into P periods, then the optimal value for δ in the partitioned
model approaches 1/P times the optimal value from the annual model.
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with our IV estimates to calibrate the effect of exposure on model parameters. Since the

pollution exposure calibration focuses on a single point in time instead of tens of thousands

of points over a lifetime, it can be performed even with millions of individuals.

Figure A.8 illustrates the results of our baseline calibration. The solid blue line shows

the survival curve for the US 1972 life table. The dashed red line reports the survival curve

produced by our calibrated model. There is a small difference between the model’s predic-

tion and the observed data in infancy, but otherwise the two curves track each other closely

and produce life expectancy estimates that differ by only 0.1 years, indicating a successful

model fit. The model’s parameter values are reported in Column (2) of Table A.11.

5.2.2. Pollution exposure parameters

Our IV estimates from Section 4 identify the effect of a 1-day, 1-ppb increase in SO2

exposure on mortality over the following month. To incorporate these estimates into our

model, we assume that exposure can raise the value of the death threshold parameter, H,

and can increase depreciation by raising the value of δ or α. A 1-day increase in the death

threshold will produce short-run mortality displacement that increases current mortality and

reduces near-future mortality by about the same amount, while an increase in depreciation

will increase both current and future mortality.

In line with the patterns shown in Figure 3, we assume that cancer-related deaths reflect

mortality displacement while other deaths reflect accelerated aging (depreciation). Let β̂ka,c
denote the IV estimate of the effect of acute exposure on cumulative mortality for age group

a from cause of death c in the k days following exposure. Consider a specific daily age,

t, that lies inside the age interval spanned by age group a. We first use the high-resolution

model estimates described above to solve numerically for a new death threshold, H̃, such

that elevating the baseline threshold to H̃ for a single day at age t yields a mortality increase

equal to the 1-day estimate for cancer-related deaths, β̂1
a,cancer. We then solve for the value

of δ̃ or α̃ that further increases mortality at age t to match the all-cause (total) estimate,

β̂1
a,all.

Because the effect of pollution exposure on underlying model parameters does not de-

pend on age, we can calibrate those parameters using IV estimates for any age group a. To

increase precision, we perform the calibration using several age groups, denoting the results

for age group a as {H̃a, δ̃a} or {H̃a, α̃a}, and then use the simple average across ages when
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projecting long-run survival. Because we need death rate magnitudes to be large enough

to match the granularity of our model, we exclude below-65 age groups.25 The specific IV

estimates used for these calibrations are reported in Table A.12.

Using only a single day to calibrate the parameters produces a noisy solution because

health capital in Equation (3) also varies with an iid health shock. To improve precision,

we solve for the 1-day changes using 50 different days around the approximate midpoint of

each age bin and take the average. For example, for the 65–69 age group, we solve for the

changes using ages 68y1d, 68y2d, ..., 68y50d.26 Appendix A.2 provides additional details.

The final result is a set of parameters for each age group, {H̃a, δ̃a} or {H̃a, α̃a}, capturing

the effect of an increase in SO2 exposure of 1 ppb. The parameter H̃a captures the mortality

displacement effect, and the parameter δ̃a or α̃a captures the accelerating aging effect.

To account for econometric uncertainty in the IV estimates, we use a resampling-based

methodology. We randomly draw an estimate of the effect of acute pollution exposure on

1-day mortality from a normal distribution with a mean and standard deviation set equal

to the mean and standard error of β̂1
a,c in Equation (1), and then calibrate the change in

model parameters to match the mortality change draw. We repeat this exercise 100 times

and report the 5th and 95th percentiles of the resulting distribution of model parameter

estimates.

Our age-specific estimates of the effect of exposure on changes in the mortality threshold

and the depreciation parameters are shown in Figure A.9. Estimates are similar across ages,

with most values falling inside the 90% confidence intervals of other estimates, which

is consistent with our assumption that the effects of exposure on model parameters are

constant over the life cycle.

25Our model includes N = 20 million individuals, so a daily death rate of 1 per million corresponds to at most
20 deaths. The IV estimates for age groups under 65 are all below 0.1 deaths per million, which is too small for
reliable calibration when N = 20 million.

26The optimal strategy would employ all 365× 5 = 1825 days in the 5-year age bin, giving more weight to
the ages near the midpoint. However, doing so is computationally burdensome and unnecessary for achieving
sufficient accuracy.
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5.3. Validation

We validate the model by comparing its predictions of the mortality effect of acute expo-

sure to IV estimates that were not used in the calibration. We calibrate only the parameters

H (mortality displacement) and δ (accelerated aging) in our validation exercises. A model

calibrated using α instead of δ produces nearly identical projections over short time hori-

zons, so we do not distinguish between them until we turn to our long-run projections.27

Because calibration for age group a is based solely on the 1-day IV estimates for that age

group, our first validation test focuses on model predictions for longer-run (>1 day) out-

comes. Figure 5 shows the results of this exercise for the 65–69 age group. The solid blue

line reports the IV estimates, and the green dot-dashed line reports “own-age” predictions,

which come from a model that was calibrated using β̂1
65,cancer and β̂1

65,all. By construction,

the own-age model prediction matches the IV estimate for the same-day effect. To assess

model performance, we compare the own-age predictions of longer-run mortality effects

to the corresponding IV estimates. All of these predictions lie within the 95% confidence

intervals of the IV estimates.

Our second, more demanding, validation test involves computing mortality predictions

for a given age group using the average of the calibrated parameters from other age

groups. For example, instead of using the calibrated parameters {H̃65, δ̃65} as we did

for the own-age predictions, we predict mortality for the 65–69 age group using the

average of the calibrated values from the 70–74, 75–79, 80–84, and 85+ age groups:

{1
4

∑
a>65 H̃a,

1
4

∑
a>65 δ̃a}. Because these “leave-one-out” predictions are not based on

the IV estimates for the 65–69 age group, the 1-day prediction now also serves as a val-

idation test. The thick red dashed line in Figure 5 shows that all of these leave-one-out

predictions lie inside the 95% confidence intervals of the IV estimates. One compelling

feature of this validation exercise is that it produces accurate predictions despite its re-

liance on IV estimates that are nearly one order of magnitude larger in size than the 65–69

estimate (Figure 4a).

27The marginal effects of δ and α on depreciation, d(t) = δtα, vary over time (and thus with age), so in theory
one could identify which parameter is a better fit for pollution exposure by using variation in mortality by age
group. In practice, a 1-day exposure event provides far too little variation for us to detect these differences.
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For purposes of comparison, we also plot predictions from a model specification that

assumes none of the 1-day exposure deaths are due to changes in the death threshold (“no

displacement”) and one that assumes all of the deaths are due to changes in the death thresh-

old (“all displacement”). In the no-displacement scenario, depicted by the orange dashed

line at the top of Figure 5, the mortality predictions increase much more rapidly than either

the own-age or leave-one-out predictions. In the all-displacement scenario, depicted by the

black dashed line at the bottom of the figure, the cumulative mortality effect falls rapidly to

zero, reflecting complete short-run mortality displacement. The predictions from these two

extreme specifications lie well outside the 95% confidence intervals of our IV estimates,

demonstrating that our IV estimates are precise enough to rule out a meaningful range of

model predictions. The wide gap between the all-displacement and no-displacement pre-

dictions underscores the importance of accurately estimating the fraction of deaths that are

attributable to mortality displacement rather than accelerated aging.

Figure A.10 shows leave-one-out predictions for all five age groups 65 and over. The

model prediction of the 28-day mortality effect lies inside the 95% confidence interval of

the corresponding IV estimate for each age group. The close concordance between these

predictions and the IV estimates suggests that our dynamic production model of health

accurately captures important determinants of mortality, at least for a one-month window

following 1-day exposure. The close concordance also shows that one does not need to

account for differences in chronic exposure histories when predicting mortality across dif-

ferent age groups, which supports our assumption that the effect of exposure on model

parameters depends only on current exposure.

Another way to validate our chronic exposure assumption is to directly compare model

predictions of the effects of longer-run (>1 day) exposure to empirical estimates. Although

we lack exogenous variation in long-term chronic exposure, we have sufficient statistical

power to aggregate our daily variation in SO2 exposure to the monthly level. First, we

isolate exogenous variation in daily SO2 by using estimates from our first-stage regression,

given by Equation (2), to form the prediction ŜO2cd =
∑50

g=1 f̂
g(θcd). We then aggregate

our sample up to time periods denoted by d̄, where d̄ has a span ranging from 2 to 28 days,

and calculate SO2cd̄ and ŜO2cd̄, the average of SO2cd and ŜO2cd over the time period d̄.

Finally, we regress Ycd̄, the mortality rate in time period d̄, on SO2cd̄ and instrument for

it using ŜO2cd̄, controlling for county-by-month, month-by-year, and time period (d̄) fixed
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effects.28 We then compare these short-run chronic exposure estimates to the corresponding

predictions from our calibrated model.

Figure 6 reports results for the 65–69 age group. Total mortality rises gradually with

the length of exposure, reaching about 5 deaths per million after two weeks. This effect

is about ten times larger than the two-week effect of acute exposure (Figure 5). In the

subsequent two weeks, the effect increases further, reaching about 15 deaths per million

at 28 days, almost twenty times larger than the corresponding acute effect. Although we

can strongly reject the hypothesis that the mortality effect is constant over the one-month

window, estimates for longer windows are noisy: the upper bound of the 95% confidence

interval for the 28-day estimate is about 5 times larger than the lower bound. Nevertheless,

it is reassuring that our model projections follow a similar trajectory and fall within the

95% confidence intervals of nearly all the IV estimates.

5.4. Long-run projections

Finally, we use our calibrated model to quantify the effects on life expectancy of a perma-

nent, 1-ppb (≈ 10%) decrease in SO2 exposure. We interpret our projections as reflecting a

decrease in both SO2 and PM2.5 exposure because the SO2 in our application is accompa-

nied by sulfate, a major component of fine particulate matter. We discuss this issue further

at the end of this section.

We compute counterfactual survival for the 1972 cohort using the average of age-specific

calibrated parameter values, {1
5

∑
a≥65 H̃a,

1
5

∑
a≥65 δ̃a} or {1

5

∑
a≥65 H̃a,

1
5

∑
a≥65 α̃a},

and assume that the change in exposure begins at birth, i.e., that exposure alters the model

parameters for each t≥ 0. Because we are quantifying long-run effects, the difference be-

tween changing the depreciation parameters δ and α is no longer negligible, so we show

both sets of estimates. For purposes of comparison, we also quantify the implied life ex-

pectancy effect of extrapolating our age-specific monthly IV estimates to the entire life

cycle.29

28Because the time period d̄ will sometimes span more than one calendar month, the month-by-year fixed
effects are not perfectly collinear with the time period fixed effects. In cases where the time period spans more
than one month, we use the fixed effect corresponding to the minimum month.

29These IV estimates are reported in the last row of Table S.2. The extrapolation assumes that daily mortality
rates increase at every age by the monthly IV point estimate for the corresponding age group, including point
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Figure 7 illustrates our results. The calibrated baseline life expectancy of the 1972 cohort

is 71.32 years. The two model-based projections indicate that a permanent, 1-ppb decrease

in SO2 exposure improves life expectancy for this cohort by 1.18–1.32 years (1.65–1.85%).

By contrast, extrapolating our short-run (monthly) IV estimates to the life cycle yields a life

expectancy improvement of about 0.17 years (0.24%), which is 7–8 times smaller than the

model-based estimates.30 The IV extrapolation is biased downwards because it is limited

by the one-month regression window and therefore cannot account for the latent effects of

pollution on people’s health capital, which may not increase mortality until years or even

decades later.

Even though decreased air pollution exposure begins at birth, Figure 7 indicates that sur-

vival gains are concentrated among older individuals: over 90 percent of the life expectancy

improvement occurs after age 50 and over 75 percent occurs after the age of 65. Because

health capital is already high at younger ages, increasing it further has a negligible effect on

mortality rates of the young. As those individuals age and their health capital approaches

the death threshold, however, the additional health capital accrued at younger ages begins

to have a meaningful effect on survival.

Interpreting these survival gains requires care because some of the SO2 exposure we

measure may be accompanied by unobserved exposure to PM2.5. Our IV estimate falls by

up to 55 percent if we control for particulate matter, and our InMAP simulations in Section

4.2 indicate that, on average, 1 ppb of SO2 is accompanied by 2.3–2.5 µg/m3 of PM2.5. If

we make the extreme assumption that our IV estimates are driven entirely by PM2.5, then

we would conclude that a permanent 1-µg/m3 decrease in PM2.5 improves life expectancy

by 0.47–0.57 years. We note that even under this extreme assumption, our estimates remain

policy relevant because the InMAP simulations also indicate that the majority of the PM2.5

captured by our wind instrument would come from the conversion of SO2 into PM2.5.

estimates that are statistically insignificant. We assume the estimates in Table A.2 apply to the midpoint of each
age bin and interpolate to calculate the rest of the values.

30These estimates and their confidence intervals are reported in the first row of Table A.13. The rest of the table
reports results for chronic exposure decreases and increases of up to 3 units. The relationship between survival
improvements and permanent changes in air pollution is roughly linear, although we caution against generalizing
from these results, since they rely heavily on the assumed linear relationship between air pollution and mortality
in Equation (1).
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To gauge the plausibility of our model projections, we compare them to estimates from

Anderson (2020), who studies the effect of living downwind of Los Angeles highways on

three-year mortality among individuals 75 or older. He estimates that a 10 percent increase

in NO2 levels reduces life expectancy among these older individuals by 0.05–0.064 years.31

To compare these estimates to our model, we construct a counterfactual for the 1972 cohort

where we increase SO2 levels by 1 unit (≈ 10 percent) beginning at age 72 for 10 years—

the approximate number of years individuals in the Anderson (2020) sample were subject

to increased pollution exposure due to living downwind versus upwind of a highway.32 We

calculate the three-year mortality effect of this increase in exposure for ages 82–85 and then

convert that to the implied change in life expectancy at birth. Our model’s counterfactual

estimates a reduction in life expectancy at birth by 0.09 years. The associated 90% confi-

dence interval ranges from 0.03 to 0.16 years, which overlaps with Anderson’s estimates

of 0.05–0.064 years. An appealing feature of our model is that we can also use it to project

mortality effects beyond Anderson’s three-year window: doing so implies that the lifetime

effect of 10 years of chronic exposure would reduce life expectancy at birth by 0.17 years

(90% confidence interval: 0.06 to 0.30).

Measuring the total costs or benefits of changes in air pollution requires accounting for

avoidance and mitigation behaviors. Avoidance is ex ante behavior that reduces pollution

exposure (e.g., migration), while mitigation is ex post behavior that reduces the harmful ef-

fects of exposure (e.g., healthcare consumption). Our quasi-experimental estimates account

for short-run avoidance or mitigation behavior that occurs within the time horizon of our

outcome window, but not for behaviors that may arise over longer time horizons. One must

therefore be careful when making long-run projections that can span an entire lifetime.

Avoidance behavior makes it difficult for researchers to accurately measure people’s

exposure, but poses no problem for the application of our model otherwise. For example,

our model can be used to predict life expectancy gains following a relocation away from a

31The key independent variable in Anderson (2020) is the percent of time that a census block group located
within 600 meters of a highway was downwind of the highway. To help interpret his reduced-form estimates,
he separately estimates a first stage using data on NO2 levels provided by four pollution monitors located near
highways.

32Anderson (2020) estimates that 78 percent of the in-sample individuals have lived in the same location for at
least 10 years. The average age of the US population over 75 is 82 in the year 2000, the center of the time period
studied in Anderson (2020).
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high-pollution area to a low-pollution area at age 40, provided that one correctly specifies

the time profile of exposure.

Mitigation behavior must be handled with greater care because it can alter the relation-

ship between exposure and model parameters. Our analyses above suggest that mitigation

does not matter significantly for our projections, at least in the US context over the medium

run. For example, our 1-day IV estimates are sufficient for forming accurate 28-day projec-

tions (Figure 5), and our three-year projections are consistent with estimates from Anderson

(2020). Furthermore, our model projections can still be used to quantify the total costs or

benefits of changes in pollution exposure even in the presence of a long-run mitigation re-

sponse. In the context of temperature, Carleton et al. (2022) note that an optimizing agent

will invest in mitigation up to the point where the marginal benefit equals marginal cost.

Applying this intuition to an analysis of a rise in pollution levels implies that our projec-

tions of the marginal mortality cost of air pollution will equal the sum of the mitigation

costs and the realized (post-mitigation) mortality costs, i.e., the total marginal cost of the

increase in pollution exposure.

6. CONCLUSION

Accurate estimates of the long-run effect of chronic air pollution exposure on health are

vital for making informed policy decisions. We propose a novel two-step approach that

combines well-identified short-run estimates of the mortality effect of air pollution with a

dynamic production model of health that can be used to form long-run survival projections.

Although we focus on air pollution, our method can be applied to other health hazards,

provided that the researcher can estimate short-run mortality effects and credibly identify

the relevant model parameters affected by the hazard.

To obtain well-identified estimates, we assemble a new dataset that combines daily data

on weather, air pollution, and mortality, and then instrument for changes in SO2 levels

using changes in wind direction. We show that the short-run mortality effects of acute SO2

exposure can be decomposed into two distinct phenomena: mortality displacement, where

exposure kills frail individuals with short counterfactual life expectancies, and accelerated

aging, where mortality continues to increase after exposure has ceased.

After incorporating our IV estimates into our survival model, we calculate that a per-

manent, ten percent decrease in air pollution exposure would improve life expectancy by
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1.2–1.3 years, holding behavior fixed. These survival benefits are nearly ten times larger

than a naive extrapolation of our IV estimates, demonstrating the importance of account-

ing for latent health changes caused by pollution exposure. While we do not account for

the costs of reducing air pollution emissions—a necessary ingredient for performing a full

cost-benefit analysis—our estimates imply that value of reducing pollution exposure may

be substantially larger than has previously been recognized.
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FIGURE 1.—The relationship between wind direction and SO2 concentration, Greater Philadelphia and Southern California areas
Greater Philadelphia area
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Notes: Sulfur dioxide (SO2) pollution monitors are depicted as black dots on the two maps. The graphs on the right plot the relationship between SO2 levels
and windward direction in each area. Windward direction describes where the wind is blowing from, with “N” indicating North, “NE” indicating Northeast,
etc. The 36 blue points report coefficient estimates from a non-parametric regression of SO2 on wind direction measured in 10-degree angle bins. The blue
shaded area shows the corresponding 95% confidence intervals. The red dashed lines report fitted curves from the parametric sine specification given by
fg(θ) in regression Equation (2). All regressions include county-by-month and month-by-year fixed effects, as well as flexible weather controls. Standard
errors are robust to heteroskedasticity.
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FIGURE 2.—IV estimates of effect of acute (1-day) SO2 exposure on cumulative mortality
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day), 1-ppb sulfur dioxide (SO2) exposure on mortality, where mortality
is measured as cumulative deaths per million over a time window ranging from 1 to 28 days, as indicated by the x-axis. The shaded area represents 95%
confidence intervals. Point estimates are reported in Column (2) of Table S.1. All regressions include county-by-month and month-by-year fixed effects,
as well as flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the
instruments. Estimates are weighted by the county population. Standard errors are clustered by county.
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FIGURE 3.—IV estimates of effect of acute (1-day) SO2 exposure on cumulative mortality, by cause of death
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2) exposure on mortality (deaths per million),
for four different causes of death: cardiovascular disease, other diseases, cancer, and external causes of death. Mortality is measured over a time window
ranging from 1 to 28 days, as indicated by the x-axis. Shaded areas represent 95% confidence intervals. Point estimates are reported in Table A.3. All
regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county population. Standard errors are
clustered by county.
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FIGURE 4.—IV estimates of effect of acute (1-day) SO2 exposure on 1-day mortality, by age group
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Notes: Each bar represents an IV estimate from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2)
exposure on 1-day mortality for a particular age group. Error bars represent 95% confidence intervals. Estimates
are also reported in Table S.2. All regressions include county-by-month and month-by-year fixed effects, as well
as flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and
two leads and two lags of the instruments. Estimates are weighted by the county population. Standard errors are
clustered by county. IV estimates for 28-day mortality are shown in Figure A.6.
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FIGURE 5.—Model predictions of effect of acute (1-day) SO2 exposure on one-month survival, ages 65–69
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Notes: The solid blue line reports IV estimates from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2) exposure on cumulative mortality
for the 65–69 age group, with 95% confidence intervals given by the blue shaded area. The thick red and thick green dashed lines report corresponding
predictions from the dynamic production model of health described by Equation (3). The “own-age” prediction, depicted by the green dashed line, is
calibrated so that its 1-day prediction matches the 1-day IV estimate (first blue point), and it attributes the cancer-related portion of the 1-day IV estimate
to the frailest individuals with the lowest levels of health capital. The “leave-one-out” model, depicted by the thick red dashed line, employs the average of
the calibrated values for all of the other older age groups, i.e., ages 70–74, 75–79, 80–84, and 85+. The orange dashed line (“no-displacement”) at the top if
the figure reports model predictions under the extreme assumption that none of the 1-day mortality effect is mortality displacement, while the green dashed
line (“all-displacement”) at the bottom of the figure reports predictions under the alternative extreme assumption that all of the 1-day effect is mortality
displacement. Figure A.10 shows plots for all age groups 65 and over.
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FIGURE 6.—Model predictions of effect of short-term chronic SO2 exposure on survival, ages 65–69
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Notes: The solid blue line reports IV estimates of the effect of short-term chronic sulfur dioxide (SO2) exposure on cumulative mortality for the 65–69 age
group, with 95% confidence intervals given by the blue shaded area. These estimates are obtained by isolating exogenous variation in daily SO2 from our
first-stage regression given by Equation (2), aggregating the data up to the level of days denoted by the x-axis, and then regressing the mortality rate on
average SO2 levels, using the average first-stage prediction as an instrument. The thick red and thick green dashed lines report corresponding predictions
from the dynamic production model of health described by Equation (3). The “own-age” prediction, depicted by the green dashed line, is calibrated so
that its 1-day prediction matches the 1-day IV estimate (first blue point), and it attributes the cancer-related portion of the 1-day IV estimate to the frailest
individuals with the lowest levels of health capital. The “leave-one-out” model, depicted by the thick red dashed line, employs the average of the calibrated
values for all of the other older age groups, i.e., ages 70–74, 75–79, 80–84, and 85+.
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FIGURE 7.—Projected effect of a permanent 1-unit decrease in SO2 on survival gains for cohort born in 1972
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Notes: This figure shows the cumulative effect of a permanent, 1-unit decrease in sulfur dioxide (SO2) on survival gains for the cohort of US individuals
born in 1972. These projections are produced by the dynamic production model of health (3), which was calibrated using our 1-day IV estimates from
Equation (1). The solid blue line (“aging model 1”) shows projections under the assumption that non-cancer-related pollution deaths are governed by
changes in the model’s depreciation parameter α, and the dashed red line (“aging model 2”) shows projections under the alternative assumption that they
are governed by the depreciation parameter δ. The dot-dashed green line (“IV extrapolation”) projects changes in life expectancy by extrapolating our
age-specific 28-day IV estimates to the whole life-cycle. The cumulative effects at age 110 equal the values reported in the first row of Table A.13.
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TABLE I

SUMMARY STATISTICS, 1972–1988

(1) (2) (3)

Mean Std. Dev. Observations

A. Pollution outcomes

SO2, ppb 8.96 12.63 2,023,369
NO2, ppb 21.25 15.61 789,506
CO, ppm 1.64 1.37 844,334
O3, ppb 25.58 13.70 665,512
TSP, µg/m3 63.14 40.21 627,359

B. One-day mortality rate outcomes

All-cause mortality, deaths per million 24.69 24.32 2,023,369
Cardiovascular 12.21 16.05 2,023,369
Cancer 5.15 9.16 2,023,369
Other 5.44 10.01 2,023,369
External 1.89 8.00 2,023,369

All-cause mortality by age group, deaths per million
Age 1 and under 33.37 166.57 2,023,369
Age 1–19 1.51 11.54 2,023,369
Age 20–44 4.41 18.46 2,023,369
Age 45–64 26.60 49.03 2,023,369
Age 65–69 70.13 170.48 2,023,369
Age 70–74 105.32 241.99 2,023,369
Age 75–79 157.60 360.39 2,023,369
Age 80–84 242.30 575.47 2,023,369
Age 85+ 442.55 924.22 2,023,369

Notes: Unit of observation is a county-day. Statistics are unweighted. Sample is restricted to observations where
both mortality and sulfur dioxide (SO2) are non-missing. Mortality is calculated as the number of daily deaths
per million individuals. Pollution data are from the Environmental Protection Agency, mortality counts are from
the National Vital Statistics, and population estimates are from the Surveillance, Epidemiology, and End Results
(SEER) Program.
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TABLE II

OLS AND IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY

OLS IV

(1) (2) (3) (4) (5)

SO2, ppb 0.0077* 0.084** 0.083** 0.085** 0.097**
(0.0031) (0.013) (0.013) (0.012) (0.014)

First-stage F-statistic 526 523 515 560
Mean outcome 25 25 25 25 25
Sample size 2,023,369 2,023,369 2,023,301 2,022,782 2,023,369

Weather controls
Baseline weather variables X X X X
Minimum temperature variables X X
More granular bins X

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include
county-by-month and month-by-year fixed effects, as well as two leads and two lags of the instruments. Column
(2) reports our baseline specification, which includes county-by-month and month-by-year fixed effects, as well
as flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and
two leads and two lags of the instruments. Column (3) additionally includes controls for minimum temperature.
Column (4) increases the granularity of the weather controls and matches the specification used in Deryugina et al.
(2019). Column (5) excludes all weather controls. Estimates are weighted by the county population. Standard
errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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TABLE III

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY, CONTROLLING FOR OTHER

POLLUTANTS

(1) (2) (3) (4)

A. All-pollutant sample

SO2, ppb 0.084** 0.060** 0.083** 0.064**
(0.012) (0.013) (0.014) (0.014)

TSP, µg/m3 0.012** 0.015**
(0.0036) (0.0035)

NO2, ppb 0.017 0.0024
(0.020) (0.017)

O3, ppb –0.036 –0.046*
(0.025) (0.022)

CO, ppm –0.21 –0.24
(0.25) (0.20)

First-stage F-statistic 81 21 10 10
Mean outcome 27 27 27 27
Sample size 78,946 78,946 78,946 78,946

B. SO2/TSP sample

SO2, ppb 0.079** 0.035*
(0.014) (0.015)

TSP, µg/m3 0.027** 0.019**
(0.0046) (0.0045)

First-stage F-statistic 200 143 50
Mean outcome 25 25 25
Sample size 627,290 627,290 627,290

Notes: Dependent variable is number of deaths per million people on the day of exposure. Regressions are esti-
mated using two-stage least squares where each pollutant is treated as an endogenous regressor. All regressions
include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature,
precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Es-
timates are weighted by the county population. Standard errors, clustered by county, are reported in parentheses.
A */** indicates significance at the 5%/1% level. Table A.4 presents estimates using a third sample that includes
all pollutants except for TSP.
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Online Appendix
“The Long-run Effect of Air Pollution on Survival”

Tatyana Deryugina, University of Illinois and NBER
Julian Reif, University of Illinois and NBER

APPENDIX A: SUPPLEMENTARY INFORMATION AND ANALYSIS

A.1. Data

Monitor-level data for sulfur dioxide (SO2), total suspended particulates (TSP), nitrogen
dioxide (NO2), O3, and carbon monoxide (CO) for the years 1972–1988 were obtained by
email request from the US Environmental Protection Agency (EPA). Each SO2 observation
provides a sample measure, usually recorded over a period of one hour. We dropped SO2

observations that had a sample duration greater than 24 hours, or that reported an SO2

measurement above 1000 parts per billion (ppb) or below –2 ppb.1 We dropped CO, NO2,
and O3 observations with negative values. All TSP observations had non-negative values.
We then aggregated all pollutants to the monitor-day level, weighting by the time duration
of each measure. Finally, data were aggregated to the county-day level by averaging over
all monitors within a county.

Figure A.1 shows trends in air pollution levels and in the number of counties with at least
one pollution monitor, separately for each pollutant. Figure S.1 shows the locations of the
4,740 active SO2 pollution monitors during our 1972–1988 sample period. The monitors
are present in 1,041 counties.

A.2. Model calibration

The dynamic production model of health given by Equation (3) depends on seven pa-
rameters:
{α, δ, I, σe, µH , σH ,H}. To achieve identification, we normalize two parameters: H∗ = 0
and σ∗H = 1. We calibrate the baseline values for the five remaining parameters using a
1972 period life table, as described in Section 5.2. Let

{
α∗, δ∗, I∗, σ∗e , µ

∗
H

}
denote those

calibrated values.
We calculate the life expectancy effects of changes in chronic air pollution exposure

for two different scenarios. In the first scenario, we assume that pollution exposure only
affects the parameters δ and H, and denote their post-exposure values as {δ̃, H̃}. In the
second scenario, we assume that exposure affects α rather than δ. Below, we describe how

1According to the AQS Data Coding Manual version 2.38 (February 2, 2010), the maximum allowable sample
value for SO2 is 1000 ppb. The EPA informed us by email that small negative values can arise due to noise and
should be included in sample averages to avoid bias. We chose –2 as the bottom cutoff because it appeared to be
the minimum allowable sample value.



we solve for {δ̃, H̃}. It is straightforward to solve for α̃ instead of δ̃ using the methodology
described below.

Consider a population of N individuals whose health capital evolves according to Equa-
tion (3). Let Θ∗ =

{
α∗, I∗, µ∗H , σ

∗
H , σ

∗
e

}
represent the five baseline calibrated parameters

unaffected by air pollution exposure. Let S be a random-number seed that fixes the initial
stock of health capital, Hi0, and the evolution of the iid shock, εit, for all individuals. Then
we can define Mt

(
δ∗,H∗

∣∣∣Θ∗,N,S) as the deterministic mortality rate at time t≥ 0 for a
cohort born in 1972, as computed by the model using the baseline parameter values.

Let β̂ka,c denote the IV estimate of the effect of acute exposure on cumulative mortality for
age group a from cause of death c in the k days following exposure. Let [t0a, t

1
a] define the

age interval spanned by age group a, measured in days. Consider a specific age, t ∈ [t0a, t
1
a].

To quantify the effect of exposure on model parameters, we first solve for the new mortality
threshold, H̃at, which is defined implicitly by the following equation:

β̂ka,cancer =Mt

(
δ∗, H̃at

∣∣∣Θ∗,N,S)−Mt

(
δ∗,H∗

∣∣∣Θ∗,N,S) (A.1)

We then solve for δ̃, which is defined implicitly by:

β̂ka,all =Mt

(
δ̃at, H̃at

∣∣∣Θ∗,N,S)−Mt

(
δ∗, H̃at

∣∣∣Θ∗,N,S) (A.2)

Health capital is strictly decreasing in δ for all individuals (see Equation 3), and death
occurs when an individual’s health stock falls below H. Thus, the mortality rate, Mt(·),
is monotonically increasing in both δ and H. Consequently, the solutions {δ̃at, H̃at} to
Equations (A.1) and (A.2) exist and are unique.2 The solutions can be computed using
standard root-finding algorithms.

We can solve for {δ̃at, H̃at} for any t ∈ [t0a, t
1
a]. We use the approximate integer midpoint

of each age bin, t = round
[
(t0a + t1a)/2

]
.3 However, using only a single day to calibrate

the parameters produces a noisy solution because health capital in Equation (3) also varies
with an iid health shock. To improve precision, we solve Equations (A.1) and (A.2) using
50 different days around the approximate midpoint of each age bin and take the average.
For example, for a= 65 (the 65–69 age group), we solve for {δ̃65,t, H̃65,t} using ages t=

2Alternatively, one could solve first for δ̃ and then for H̃. That would yield estimates that are numerically very
close but not identical to the ones resulting from this method. We solve for H̃ first because it is more efficient:
when solving for α̃, we do not need to separately solve for H̃ again as it was already computed when solving for
δ̃.

3For the 85+ age group, we use a midpoint of 90, which is the average age of death in that group during our
sample period.
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68y1d, t = 68y2d, ..., t = 68y50d.4 Figure S.3 shows the cumulative mortality effects of
acute (1-day) exposure to air pollution for 50 separate daily ages from the 65–69 age group,
as predicted by the model using the values of {δ̃65,t, H̃65,t} for each age t. By construction,
the effect shown for the first day is always equal to the 1-day IV estimate for the 65–69 age
group (see first row of Column (5) in Table A.2). The subsequent values report longer-run
effects of exposure up to 30 days later. Each value reports mortality in the counterfactual
relative to mortality in the baseline case (no exposure). A decrease in the cumulative value
indicates mortality displacement. The “own-age prediction” in Figure 5 reports the average
of these 50 plots.

We compute the age-specific parameter solutions {H̃a, δ̃a} as the averages of these 50
solutions:

H̃a =
1

50

∑
t

H̃at

δ̃a =
1

50

∑
t

δ̃at

Figure A.9 reports {H̃a, δ̃a} for the five oldest age groups. The estimates are expressed
as deviations from the baseline calibrated values (i.e., H̃a − H∗ = H̃a and δ̃a − δ∗). The
parameters used to predict the long-run survival effects of air pollution are computed as the
average across these five age groups:

H̃ =
1

5

∑
a

H̃a

δ̃ =
1

5

∑
a

δ̃a

To account for econometric uncertainty in the IV estimates, we use a resampling-based
methodology. We randomly draw an estimate of the effect of acute pollution exposure on
1-day mortality from a normal distribution with a mean and standard deviation set equal
to the mean and standard error of β̂1

a,c in Equation (1), and then calibrate the change in
model parameters to match the mortality change draw. We repeat this exercise 100 times
and report the 5th and 95th percentiles of the resulting distribution of model parameter
estimates. To reduce the computational burden, we use 20 different days rather than 50
when computing {H̃a, δ̃a} during the resampling.

4The optimal strategy would employ all 365 × 5 = 1825 days in the 5-year age bin, giving more weight to
the ages near the midpoint. However, doing so is computationally burdensome and unnecessary for achieving
sufficient accuracy.
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FIGURE A.1.—Air pollution means and population coverage levels, 1972–1988
(a) SO2
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Notes: The solid blue lines report population-weighted pollution levels for all US counties with at least one daily
reading for that pollutant. The dashed red line reports the number of counties with at least one operational monitor
for the pollutant. Data are obtained from the EPA Air Quality database. SO2, CO, NO2, and O3 are measured in
parts per billion (ppb). Total suspended particulates (TSP) is measured in micrograms per cubic meter (µg/m3).
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FIGURE A.2.—Trends in US mortality rates, 1972–1988
(a) By age group
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Notes: These two figures report annual mortality rates for the US population. These rates are calculated using
mortality data from the National Vital Statistics and population data from SEER. Annual mortality rates are
approximately 365 times larger than the daily mortality rates used in the analysis.
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FIGURE A.3.—Strength of the first stage, by geographic group
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Notes: This map shows the strength of the first stage given by Equation (2), for each of the 50 geographic groups included in our main estimation sample.
The strength is measured as the difference in predicted SO2 levels (parts per billion) between the most and least polluting wind directions. Predictions are
calculated using the parametric sine specification f̂g(θ) = γ̂1g sin (θ) + γ̂2g sin (θ/2), for θ ∈ [0,2π). Unshaded (white) counties have no SO2 monitors and
are not included in our sample.
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FIGURE A.4.—IV estimates of effect of acute (1-day) SO2 exposure on cumulative mortality up to 90 days following exposure
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day), 1-ppb SO2 exposure on mortality, where mortality is measured
as cumulative deaths per million over a time window ranging from 1 to 28 days, as indicated by the x-axis. The shaded area represents 95% confidence
intervals. All regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation,
and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county population. Standard
errors are clustered by county.
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FIGURE A.5.—IV estimates of effect of acute (1-day) SO2 exposure on mortality, by detailed cause of death
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2)
exposure on mortality (deaths per million), for twenty-six different causes of death. Definitions for each cause
of death are available in Table S.3. Cumulative mortality is measured over a time window ranging from 1 to 28
days as indicated by the x-axis. Shaded areas represent 95% confidence intervals. All regressions include county-
by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation,
and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are
weighted by the county population. Standard errors are clustered by county.
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FIGURE A.6.—IV estimates of effect of acute (1-day) SO2 exposure on 28-day mortality, by age group
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Notes: Each bar represents an IV estimate from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2)
exposure on 28-day mortality for a particular age group. Error bars represent 95% confidence intervals. Estimates
are also reported in Table S.2. All regressions include county-by-month and month-by-year fixed effects, as well
as flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and
two leads and two lags of the instruments. Estimates are weighted by the county population. Standard errors are
clustered by county.
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FIGURE A.7.—IV estimates of effect of acute (1-day) SO2 exposure on cancer-related mortality
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2) exposure on cancer-related mortality (deaths
per million). “Cancer (underlying)”, which replicates the cancer estimates shown in Figure 3, includes only deaths where cancer is listed as the underlying
cause of death on the death certificate. “Cancer (underlying or secondary)” includes deaths where cancer is listed as the underlying cause of death or as
one of the secondary causes. Mortality is measured with a time window ranging from 1 to 28 days, as indicated by the x-axis. Shaded areas represent 95%
confidence intervals. Estimates are also reported in Table A.3. All regressions include county-by-month and month-by-year fixed effects, as well as flexible
controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates
are weighted by the county population. Standard errors are clustered by county.
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FIGURE A.8.—Baseline calibration of the dynamic production model of health
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Notes: The solid blue line depicts the survival curve derived from the 1972 period life table for the United States. The dashed red line reports the predicted
survival from our dynamic production model of health (3), which was calibrated using these 1972 data. The calibrated model parameters are reported in
Column (2) of Table A.11.
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FIGURE A.9.—The effect of acute (1-day) SO2 exposure on model parameters
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Notes: Panel (a) reports the effect of acute (1-day) pollution exposure on the change in the value of the parameter
α from the health model (3), under the assumption that all non-cancer-related deaths operate through changes in
α and all other deaths operate through changes in H. The baseline value is denoted by α∗ and the post-exposure
value following calibration using age group a is denoted by α̃a. Panel (b) reports estimates under the alternative
assumption that all non-cancer-related deaths operate through changes in the aging parameter δ rather than α.
Panel (c) reports the effect on the change in the value of the parameter H, which governs mortality displacement
and is calibrated using cancer-related deaths. The error bars report the 5th and 95th percentiles from a set of 100
bootstrap replications. Baseline values for all model parameters are reported in Table A.11.
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FIGURE A.10.—Comparison of model predictions to IV estimates, by age group
(a) Ages 65–69
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Notes: The solid blue line reports IV estimates from Equation (1) of the effect of acute (1-day) sulfur dioxide
(SO2) exposure on cumulative mortality, with 95% confidence intervals given by the blue shaded area. The thick
red dashed line reports “leave-one-out” predictions from the dynamic production model of health described by
Equation (3). The leave-one-out model employs the average of the calibrated values for all of the other age groups,
e.g., for ages 65–69 it uses the average of the values for ages 70–74, 75–79, 80–84, and 85+. The orange dashed
line (“no-displacement”) reports model predictions under the extreme assumption that none of the 1-day mortality
effect is mortality displacement, while the green dashed line (“all-displacement”) reports predictions under the
alternative extreme assumption that all of the 1-day effect is mortality displacement.
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TABLE A.1

COMPLIER COUNTY CHARACTERISTICS FOR THE WIND DIRECTION INSTRUMENT

Population Percent
65+

Percent
Black

Per-
capita

income
(dollars)

Per-
capita

transfers
(dollars)

Emp. rate Mean
SO2

(ppb)

(1) (2) (3) (4) (5) (6) (7)

1st-stage strength, ppb 4,138 0.048 –1.4** 84** 32** –0.56** 1.4**
(8,988) (0.054) (0.15) (28) (4.4) (0.17) (0.088)

Mean outcome 244,789 11 9.2 8,856 1,115 47 7.4
Sample size 9,427 9,427 9,328 9,286 9,286 9,286 9,427
R-squared 0.0099 0.061 0.069 0.77 0.78 0.047 0.30

Notes: This table reports an analysis of complier county characteristics for the wind direction instrument. Com-
plier characteristics are estimated by regressing the county-level variable reported at the top of each column on
the strength of the first stage. First-stage strength is measured as the difference in predicted SO2 levels between
the most and least polluting wind directions. All regressions include year fixed effects. County characteristics are
obtained from the Regional Economic Information System (REIS) dataset published by the Bureau of Economic
Analysis (BEA). Standard errors, clustered by county, are reported in parentheses. A */** indicates significance
at the 5%/1% level.
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TABLE A.2

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON CUMULATIVE MORTALITY, FOR DIFFERENT AGE

GROUPS AND OUTCOME WINDOWS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Window 0–1 1–19 20–44 45–64 65–69 70–74 75–79 80–84 85+

1 day 0.064 0.0027 0.016** 0.056** 0.30** 0.24** 0.48** 1.1** 2.3**
(0.060) (0.0022) (0.0052) (0.013) (0.046) (0.071) (0.097) (0.17) (0.44)

3 days 0.21** 0.00068 0.021** 0.058** 0.22** 0.36** 0.64** 1.4** 3.2**
(0.080) (0.0033) (0.0063) (0.014) (0.066) (0.089) (0.11) (0.25) (0.56)

7 days 0.31* –0.0043 0.022** 0.025 0.30** 0.55** 1.0** 1.5** 3.2**
(0.15) (0.0061) (0.0077) (0.023) (0.10) (0.11) (0.19) (0.35) (0.63)

14 days 0.27 –0.0071 0.0099 0.014 0.54** 0.79** 1.3** 2.3** 4.3**
(0.27) (0.0074) (0.010) (0.038) (0.15) (0.18) (0.26) (0.54) (1.1)

28 days 0.53 0.013 0.0060 0.067 0.85** 1.4** 1.9** 2.9** 6.5**
(0.43) (0.011) (0.019) (0.052) (0.25) (0.24) (0.50) (0.73) (1.7)

Notes: Dependent variable is cumulative number of deaths per million people in the days following acute (1-day)
exposure. Each estimate comes from a separate regression. Age group is given at the top of each column. All
regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum
temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the
instruments. Estimates are weighted by the county population. Standard errors, clustered by county, are reported
in parentheses. A */** indicates significance at the 5%/1% level.
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TABLE A.3

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON CUMULATIVE MORTALITY, FOR DIFFERENT

CAUSES OF DEATH AND OUTCOME WINDOWS

(1) (2) (3) (4)

Outcome window Cardio Cancer Other External

1 day 0.029** 0.027** 0.023** 0.0047**
(0.0045) (0.0044) (0.0046) (0.0016)

3 days 0.040** 0.024** 0.029** 0.0070*
(0.0054) (0.0039) (0.0045) (0.0030)

5 days 0.046** 0.015** 0.035** 0.0041
(0.0078) (0.0043) (0.0071) (0.0032)

7 days 0.054** 0.012** 0.037** 0.0034
(0.0089) (0.0046) (0.0077) (0.0037)

10 days 0.060** 0.016** 0.044** 0.0032
(0.011) (0.0055) (0.0097) (0.0040)

14 days 0.069** 0.0090 0.052** 0.000048
(0.015) (0.0067) (0.012) (0.0054)

21 days 0.080** 0.0055 0.066** 0.0068
(0.019) (0.0085) (0.015) (0.0074)

28 days 0.097** 0.0082 0.077** 0.0074
(0.020) (0.011) (0.019) (0.0086)

Notes: Dependent variable is cumulative number of deaths per million people in the days following acute (1-
day) exposure. Each estimate comes from a separate regression. Cause of death is given at the top of each column.
Estimates are also shown in Figure 3. All regressions include county-by-month and month-by-year fixed effects, as
well as flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather controls;
and two leads and two lags of the instruments. Estimates are weighted by the county population. Standard errors,
clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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TABLE A.4

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY, CONTROLLING FOR ALL

POLLUTANTS EXCEPT TSP

(1) (2) (3) (4) (5) (6) (7)

SO2, ppb 0.085** 0.077** 0.087** 0.082** 0.077** 0.084** 0.078**
(0.0085) (0.012) (0.010) (0.0091) (0.012) (0.011) (0.013)

NO2, ppb 0.010 0.011 0.013
(0.010) (0.015) (0.015)

O3, ppb –0.0060 –0.0053 –0.0093
(0.020) (0.020) (0.020)

CO, ppm 0.097 –0.012 0.095 –0.038
(0.13) (0.20) (0.14) (0.20)

First-stage F 225 72 34 91 41 34 30
Mean outcome 26 26 26 26 26 26 26
Sample size 275,690 275,690 275,690 275,690 275,690 275,690 275,690

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include
county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precip-
itation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates
are weighted by the county population. Standard errors, clustered by county, are reported in parentheses. A */**
indicates significance at the 5%/1% level.

TABLE A.5

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY, USING DIFFERENT FIXED

EFFECTS

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.076** 0.078** 0.081** 0.079** 0.077**
(0.013) (0.0094) (0.0090) (0.0096) (0.0096) (0.0094)

Fixed effects county-
month,

month-year

county,
year, month

county,
state-year-

month

county-
year,

state-month

county,
year,

state-month

county,
month-year,
state-month

First-stage F-statistic 526 467 536 598 504 508
Mean outcome 25 25 25 25 25 25
Sample size 2,023,369 2,023,369 2,023,345 2,023,350 2,023,369 2,023,369

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include
flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and
two leads and two lags of the instruments. Estimates are weighted by the county population. Standard errors,
clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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TABLE A.6

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY, CLUSTERING STANDARD

ERRORS AT DIFFERENT LEVELS

(1) (2) (3) (4)

SO2, ppb 0.084** 0.084** 0.084** 0.084**
(0.013) (0.013) (0.016) (0.012)

Clustering level(s) County County,
geographic

group by year

Geographic
group

State

First-stage F-statistic 526 526 526 526
Mean outcome 25 25 25 25
Sample size 2,023,369 2,023,369 2,023,369 2,023,369

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include
county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precip-
itation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates
are weighted by the county population. Standard errors, clustered at the level(s) indicated in each column, are
reported in parentheses. Geographic groups are shown in Figure S.1. A */** indicates significance at the 5%/1%
level.

TABLE A.7

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY, USING DIFFERENT NUMBERS

OF INSTRUMENT LEADS AND LAGS

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.087** 0.090** 0.084** 0.083** 0.083**
(0.013) (0.013) (0.014) (0.013) (0.013) (0.013)

# of instrument leads 2 0 1 4 4 6
# of instrument lags 2 0 1 4 6 6
First-stage F-statistic 526 761 569 525 524 524
Mean outcome 25 25 25 25 25 25
Sample size 2,023,369 2,023,369 2,023,369 2,020,342 2,017,398 2,017,398

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include
county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precip-
itation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates
are weighted by the county population. Standard errors, clustered by county, are reported in parentheses. A */**
indicates significance at the 5%/1% level.
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TABLE A.8

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY, USING DIFFERENT

FIRST-STAGE SPECIFICATIONS

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.097** 0.073** 0.080** 0.077** 0.080**
(0.013) (0.014) (0.012) (0.014) (0.015) (0.016)

Num. geo. groups 50 25 100 50 50 50
Wind angle spec Sines Sines Sines 40-

degree
bins

60-
degree
bins

90-
degree
bins

Num. instruments 100 50 200 400 250 150
First-stage F 526 886 310 142 194 263
Mean outcome 25 25 25 25 25 25
Sample size 2,023,369 2,023,369 2,023,369 2,023,369 2,023,369 2,023,369

Notes: Dependent variable is number of deaths per million people on the day of exposure. Column (1) reports our
main specification, which allows the effect of wind direction to vary across 50 different geographic groups and
assumes that the effect of wind direction on pollution, fg(·), follows the sine parameterization given by Equation
(2). Columns (2)–(3) vary the number of geographic groups employed in the first stage. Columns (4)–(6) use
different non-parametric parameterizations for fg(·). All regressions include county-by-month and month-by-
year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind speed; leads
of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county
population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the
5%/1% level.

TABLE A.9

2SLS AND LIML ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON CUMULATIVE MORTALITY, FOR

DIFFERENT OUTCOME WINDOWS

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.084** 0.11** 0.10** 0.19** 0.20**
(0.013) (0.013) (0.017) (0.013) (0.039) (0.028)

IV method 2SLS LIML 2SLS LIML 2SLS LIML
Outcome window (days) 1 1 7 7 28 28
First-stage F-statistic 526 752 524 745 512 729
Mean outcome 25 25 173 173 691 691
Sample size 2,023,369 2,022,046 2,023,369 2,022,046 2,023,369 2,022,046

Notes: Dependent variable is cumulative number of deaths per million people in the days following acute (1-day)
exposure. All regressions include county-by-month and month-by-year fixed effects, as well as flexible controls
for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two
lags of the instruments. Estimates are weighted by the county population. Standard errors, clustered by county,
are reported in parentheses. A */** indicates significance at the 5%/1% level.
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TABLE A.10

PLACEBO AND FALSIFICATION TESTS OF THE EFFECT OF ACUTE SO2 EXPOSURE ON MORTALITY

(1) (2) (3) (4)

SO2, ppb –0.079 0.18 –0.040
(0.062) (0.23) (0.49)

SO2 on day t+ 1, ppb –0.0033
(0.0048)

Outcome window, days 1 7 28 1
First-stage F-statistic 2.0 1.9 1.9 528
Mean outcome 25 173 691 25
Sample size 2,023,369 2,023,369 2,023,369 1,846,528

Placebo test X X X
Falsification test X

Notes: Dependent variable is cumulative number of deaths per million people in the days following acute (1-
day) exposure. Columns (1)–(3) report results of placebo regressions where the wind direction instrument is a
randomly generated variable. Column (4) reports a falsification test of the effect of SO2 exposure on the previous
day’s mortality rate. All regressions include county-by-month and month-by-year fixed effects, as well as flexible
controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads
and two lags of the instruments. Estimates are weighted by the county population. Standard errors, clustered by
county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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TABLE A.11

BASELINE PARAMETER VALUES FOR THE DYNAMIC PRODUCTION MODEL OF HEALTH

(1) (2)

Parameter Annual data Daily data

I 0.74773 0.0020521
α 1.53762 1.537619
ln δ –5.83878 –11.74124
µH 10.39737 11.43803
σe 2.25247 0.1178985

N 1,000,000 100,000
SSE 57.80479 20880.82

Notes: This table reports baseline parameter values for the dynamic production model of health given by Equation
(3). Column (1) reports parameter estimates when the model is fitted to annual survival data from a 1972 period
life table. Column (2) reports corresponding estimates for daily data. The parameters H and σH are normalized
to 0 and 1, respectively. N is the number of individuals in the simulation, and SSE is the sum of squared errors.
The resulting fit for Column (2) is shown in Figure A.8. The mortality data underlying the life table are counts,
not samples. Because there is no sampling error, we do not report standard errors for these parameter estimates.
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TABLE A.12

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON ALL-CAUSE AND CANCER-RELATED 1-DAY

MORTALITY, AGES 65 AND OVER

(1) (2)

Age group All causes Cancer-related causes

65–69 0.30** 0.17**
(0.046) (0.028)

70–74 0.24** 0.14**
(0.071) (0.034)

75–79 0.48** 0.13**
(0.097) (0.039)

80–84 1.1** 0.18**
(0.17) (0.066)

85+ 2.3** 0.17*
(0.44) (0.085)

Notes: These estimates are used to calibrate the effect of air pollution exposure on mortality in the dynamic
production model of health given by Equation 3. Dependent variable is number of deaths per million people on
the day of exposure. Each estimate comes from a separate regression. All regressions include county-by-month
and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted
by the county population. Standard errors, clustered by county, are reported in parentheses. A */** indicates
significance at the 5%/1% level.
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TABLE A.13

PROJECTED EFFECT OF PERMANENT CHANGE IN SO2 ON SURVIVAL GAINS (YEARS)

(1) (2) (3)

IV extrapolation Aging model 1 (α) Aging model 2 (δ)

1-ppb decrease 0.17 1.18 1.32
[–0.02, 0.36] [0.35, 2.21] [0.38, 2.51]

2-ppb decrease 0.34 2.41 2.67
[–0.04, 0.73] [0.67, 4.89] [0.73, 5.56]

3-ppb decrease 0.51 3.76 4.12
[–0.06, 1.10] [0.95, 7.55] [1.04, 8.50]

1-ppb increase –0.17 –1.05 –1.20
[–0.36, 0.02] [–1.99, –0.31] [–2.33, –0.34]

2-ppb increase –0.33 –2.15 –2.46
[–0.71, 0.04] [–3.77, –0.68] [–4.43, –0.76]

3-ppb increase –0.50 –3.12 –3.58
[–1.05, 0.06] [–5.30, –0.94] [–6.22, –1.04]

Notes: Each value in this table reports the projected change in life expectancy (years) caused by a permanent
change in SO2 of up to 3 part per billion (ppb) for the cohort of US individuals born in 1972. Baseline life
expectancy in 1972 is 71.32 years. Confidence intervals for the 5th and 95th percentiles are reported in brackets.
Values in Column (1) are calculated by extrapolating our age-specific 28-day IV estimates to the whole life-
cycle. Values in Columns (2) and (3) come from the dynamic production model of health described by Equation
(3). Column (2) reports projections under the assumption that non-cancer-related pollution deaths are governed by
changes in the model’s depreciation parameter α. Column (3) reports projections under the alternative assumption
that they are governed by the depreciation parameter δ. Figure 7 shows how the survival gains reported in the first
row are distributed across the life cycle.
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FIGURE S.1.—Locations of the 50 geographic groups and SO2 monitors

Notes: This map shows the 50 geographic groups included in our main estimation sample. Each group is shaded in a different color. The black dots
represent the locations of the SO2 monitors. Unshaded (white) counties have no SO2 monitors and are not included in our sample. The Southern California
and Greater Philadelphia groups are shown in detail in Figure 1. The first-stage effect of wind direction on air pollution is allowed to vary across geographic
groups, as shown in Equation (2).

S-1



FIGURE S.2.—The relationship between wind direction and SO2 concentrations, by geographic group

-2

0

2

4

N NE E SE S SW W NW N

Jefferson, AL

-2

0

2

4

N NE E SE S SW W NW N

Maricopa, AZ

-1

0

1

2

N NE E SE S SW W NW N

Los Angeles, CA

-.5
0

.5
1

1.5

N NE E SE S SW W NW N

Santa Clara, CA

-4

-2

0

2

N NE E SE S SW W NW N

Denver, CO

-2

-1

0

1

2

N NE E SE S SW W NW N

Duval, FL

-1
0
1
2
3

N NE E SE S SW W NW N

Miami-Dade, FL

-4

-2

0

2

4

N NE E SE S SW W NW N

Fulton, GA

-2

-1

0

1

2

N NE E SE S SW W NW N

Muscogee, GA

-1
0
1
2
3
4

N NE E SE S SW W NW N

Cook, IL

-2

0

2

4

6

N NE E SE S SW W NW N

Marion, IN

-2
0
2
4
6
8

N NE E SE S SW W NW N

Polk, IA

-1

0

1

2

3

N NE E SE S SW W NW N

Orleans, LA

-4

-2

0

2

4

N NE E SE S SW W NW N

Cumberland, ME

-6
-4
-2
0
2
4

N NE E SE S SW W NW N

Penobscot, ME

-3
-2
-1
0
1

N NE E SE S SW W NW N

Baltimore, MD

-3
-2
-1
0
1
2

N NE E SE S SW W NW N

Middlesex, MA

-2

0

2

4

6

N NE E SE S SW W NW N

Wayne, MI

-4
-2
0
2
4
6

N NE E SE S SW W NW N

Hennepin, MN

-4
-2
0
2
4

N NE E SE S SW W NW N

Jackson, MO

-2

0

2

4

N NE E SE S SW W NW N

St. Louis, MO

-4

-2

0

2

4

N NE E SE S SW W NW N

Yellowstone, MT

-10

0

10

20

30

N NE E SE S SW W NW N

Douglas, NE

-8
-6
-4
-2
0
2

N NE E SE S SW W NW N

Erie, NY

S-2



-6
-4
-2
0
2

N NE E SE S SW W NW N

Nassau, NY

-4

-2

0

2

4

N NE E SE S SW W NW N

Suffolk, NY

-3

-2

-1

0

1

N NE E SE S SW W NW N

Buncombe, NC

-1

0

1

2

N NE E SE S SW W NW N

Guilford, NC

-2

-1

0

1

2

N NE E SE S SW W NW N

Mecklenburg, NC

-2

0

2

4

6

N NE E SE S SW W NW N

Wake, NC

-2
0
2
4
6
8

N NE E SE S SW W NW N

Cuyahoga, OH

-5

0

5

10

N NE E SE S SW W NW N

Franklin, OH

-4

-2

0

2

4

N NE E SE S SW W NW N

Hamilton, OH

-2
0
2
4
6
8

N NE E SE S SW W NW N

Montgomery, OH

-5

0

5

N NE E SE S SW W NW N

Allegheny, PA

-6

-4

-2

0

2

N NE E SE S SW W NW N

Philadelphia, PA

-1.5
-1

-.5
0
.5

N NE E SE S SW WNW N

Charleston, SC

-.5
0
.5
1

1.5
2

N NE E SE S SW W NW N

Pennington, SD

-2

0

2

4

N NE E SE S SW W NW N

Davidson, TN

-.5

0

.5

1

1.5

N NE E SE S SW W NW N

Dallas, TX

-2
-1
0
1
2

N NE E SE S SW W NW N

Harris, TX

-4

-2

0

2

N NE E SE S SW W NW N

Lubbock, TX

-6
-4
-2
0
2
4

N NE E SE S SW W NW N

Salt Lake, UT

-4
-2
0
2
4

N NE E SE S SW W NW N

Chittenden, VT

-3
-2
-1
0
1
2

N NE E SE S SW W NW N

Norfolk, VA

-2
-1
0
1
2
3

N NE E SE S SW W NW N

King, WA

-5

0

5

10

15

N NE E SE S SW W NW N

Spokane, WA

-2
0
2
4
6

N NE E SE S SW W NW N

Kanawha, WV

S-3



-2
0
2
4
6

N NE E SE S SW W NW N

Brown, WI

-2

-1

0

1

2

N NE E SE S SW W NW N

Dane, WI

Notes: The graphs plot the relationship between SO2 levels and windward direction in each area. Windward di-
rection describes where the wind is blowing from, with “N” indicating North, “NE” indicating Northeast, etc. The
36 blue points report coefficient estimates from a non-parametric regression of SO2 on wind direction measured
in 10-degree angle bins. The blue shaded area shows the corresponding 95% confidence intervals. The red dashed
lines report fitted curves from the parametric sine specification given by fg(θ) in regression Equation (2). All
regressions include county-by-month and month-by-year fixed effects, and flexible weather controls. Standard
errors are robust to heteroskedasticity. The plots for “Los Angeles, CA” and “Baltimore, MD” are reproduced as
“Greater Philadelphia area” and “Southern California area” in Figure 1.
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FIGURE S.3.—Predicted effects of acute (1-day) SO2 exposure on cumulative mortality, for selected ages
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Notes: Each plot corresponds to a different age (68 years 1 day, 68 years 2 days, etc.) from the dynamic production model of health (3). Plots show
the predicted effect of acute exposure on cumulative mortality (deaths per million) up to 30 days following exposure, using the calibration methodology
described in Section 5. The first point of each plot (x = 1 day since exposure) is equal to the 1-day IV estimate for the 65–69 age group (Figure 4a). The
subsequent values are model predictions. The average of these 50 plots corresponds to the dashed green line (“own-age prediction”) shown in Figure 5.
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TABLE S.1

OLS AND IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON CUMULATIVE MORTALITY, FOR

DIFFERENT OUTCOME WINDOWS

(1) (2)

Outcome window OLS IV

1 day 0.0077* 0.084**
(0.0031) (0.013)

3 days 0.021* 0.10**
(0.0092) (0.013)

5 days 0.029 0.099**
(0.015) (0.016)

7 days 0.031 0.11**
(0.020) (0.017)

10 days 0.035 0.12**
(0.028) (0.019)

14 days 0.042 0.13**
(0.039) (0.024)

21 days 0.049 0.16**
(0.056) (0.035)

28 days 0.046 0.19**
(0.073) (0.039)

Notes: Dependent variable is cumulative number of deaths per million people in the days following acute (1-day)
exposure. Each estimate comes from a separate regression. IV estimates in Column (2) are shown in Figure 2. All
regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum
temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the
instruments. Estimates are weighted by the county population. Standard errors, clustered by county, are reported
in parentheses. A */** indicates significance at the 5%/1% level.
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TABLE S.2

IV ESTIMATES OF EFFECT OF ACUTE SO2 EXPOSURE ON 1-DAY MORTALITY, FOR DIFFERENT AGE GROUPS

(1) (2)

Age group Absolute effect, deaths per million Relative effect, percent

0–1 0.064 0.19
(0.060) (0.18)

1–19 0.0027 0.18
(0.0022) (0.15)

20–44 0.016** 0.37**
(0.0052) (0.12)

45–64 0.056** 0.21**
(0.013) (0.048)

65–69 0.30** 0.43**
(0.046) (0.066)

70–74 0.24** 0.22**
(0.071) (0.067)

75–79 0.48** 0.30**
(0.097) (0.061)

80–84 1.1** 0.43**
(0.17) (0.071)

85+ 2.3** 0.51**
(0.44) (0.10)

Notes: Dependent variable is number of deaths per million people on the day of exposure. Each estimate comes
from a separate regression. Relative effect is calculated as the percent of the age group’s mean one-day mortality
rate. Estimates are also shown in panels (a) and (b) of Figure 4. All regressions include county-by-month and
month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind speed;
leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the
county population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance
at the 5%/1% level.
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TABLE S.3

ICD-8 AND ICD-9 CODES FOR SUBCATEGORIES OF CARDIOVASCULAR AND OTHER DISEASES

ID Disease ICD-8 codes (1968–1978) ICD-9 codes (1979–1998) Prevalence (%)

Cardiovascular diseases

1 Heart diseases 390–398.9, 402–402.9, 404–429.9, 410–429.9 390–398.9, 402–402.9, 404–429.9 37.58
2 Hypertension 400–400.9, 401–401.9, 403–403.9 401–401.9, 403–403.9 0.37
3 Cerebrovascular disease Same as ICD-9 430–438.9 8.69
4 Atherosclerosis Same as ICD-9 440–440.9 1.38
5 Other cardiovascular diseases Same as ICD-9 441–448.9 1.17

Other diseases

6 Infectious and parasitic diseases Same as ICD-9 001–139.9 1.13
7 Benign neoplasms Same as ICD-9 210–239.9 0.29

Endocrine, nutritional and metabolic diseases, and immunity disorders
8 Diabetes Same as ICD-9 250–250.9 1.81
9 Other endocrine, nutritional and metabolic diseases, and immunity disorders Same as ICD-9 240–249.0, 260–279.9 0.57
10 Diseases of blood and blood forming organs Same as ICD-9 280–289.9 0.32
11 Mental disorders Same as ICD-9 290–319 0.71

Diseases of the nervous system and sense organs
12 Meningitis Same as ICD-9 320–322.9 0.08
13 Parkinson’s disease (paralysis agitans) 342 332–332.1 0.21
14 Other diseases of nervous system and sense organs 320–341.9, 343–389.9 323–331.9, 332.2–389.9 0.89

Diseases of the respiratory system
15 Acute bronchitis and bronchiolitis Same as ICD-9 466–466.9 0.03
16 Pneumonia and influenza 470–474.9, 480–486.9 480–487.9 2.97
17 COPD and allied conditions 490–493.9 490–496.9 2.52
18 Other respiratory diseases 460–469.9, 475–479.9, 487–489.9, 494–519.9 460–465.9, 467–479.9, 488–489.9, 497–519.9 1.25

Diseases of the digestive system
19 Ulcer of stomach and duodenum Same as ICD-9 531–533.9 0.33
20 Appendicitis Same as ICD-9 540–543.9 0.03
21 Hernia Same as ICD-9 550–553.9, 560–560.9 0.29
22 Chronic liver diseases Same as ICD-9 571–571.9 1.48
23 Other digestive diseases Same as ICD-9 520–530.9, 534–539.9, 544–549.9, 554–559.9, 561–570.9, 572–579.9 1.54

Diseases of the genitourinary system
24 Nephritis and kidney infections Same as ICD-9 580–590.9 0.91
25 Other diseases of the genitourinary system Same as ICD-9 591–629.9 0.64
26 Residual: Complications of pregnancy, childbirth, and the puerperium; diseases of

veins and lymphatics, and other diseases of circulatory system; diseases of the skin and
subcutaneous tissue; diseases of the musculoskeletal system and connective tissue;
congenital anomalies; certain conditions originating in the perinatal period; and
ill-defined conditions

Same as ICD-9 450–459.9, 630–799.9 4.28

Notes: This table lists the ICD-8 and ICD-9 codes that define the different causes of death shown in Figure A.5. Death certificates used ICD-8 codes during the years 1968–1978,
and used ICD-9 codes during the years 1979–1998. ICD-8 codes are shown in the table only when they differ from the ICD-9 codes. Prevalence reports the number of deaths
from the disease during 1972–1988 as a fraction of total deaths.
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