The Future Adult Model: Technical Documentation
Dana P. Goldman, University of Southern California
Duncan Ermini Leaf, University of Southern California
Bryan Tysinger, University of Southern California

July 21, 2021

Contents

1 Functioning of the dynamic model 4
1.1 Background 4
1.2 Overview 4
1.3 Comparison with other microsimulation models of health expenditures 5
1.3.1 CBOLT Model 6
1.3.2 Centers for Medicare and Medicaid Services 6
1.3.3 MINT Model 6
2 Data sources used for estimation 6
2.1 Panel Survey of Income Dynamics 6
2.2 Health and Retirement Study 7
2.3 Medical Expenditure Panel Survey 7
2.4 Medicare Current Beneficiary Survey 7
3 Estimation 8
3.1 Transition model 8
3.1.1 Further Details on Specific Transition Models 9
3.1.2 Inverse Hyperbolic Sine Transformation 10
4 Model for replenishing cohorts 11
4.1 Model and estimation 11
4.2 Trends for replenishing cohorts 12
5 Government revenues and expenditures 12
5.1 Medical costs estimation 12
6 Implementation 13
6.1 Intervention Module 14
7 Validation 14
7.1 Data Splitting 15
7.1.1 Demographics 15
7.1.2 Health Outcomes 15
7.1.3 Health Risk Factors 15
7.1.4 Economic Outcomes 15
7.2 External Corroboration 15
8 Baseline Forecasts 16
8.1 Disease Prevalence 16
9 Acknowledgments 16
10 Tables 16
References 33

List of Figures

1 Architecture of the FAM 5
2 Historic and Forecasted Chronic Disease Prevalence for Men 25+ 29
3 Historic and Forecasted Chronic Disease Prevalence for Women 25+ 29
4 Historic and Forecasted ADL and IADL Prevalence for Men 25+ 30
5 Historic and Forecasted ADL and IADL Prevalence for Women 25+ 30
List of Tables
1 Estimated outcomes in replenishing cohorts module 16
2 Estimated outcomes in transitions module 17
3 Health condition prevalences in survey data 18
4 Survey questions used to determine health conditions 19
5 Outcomes in the transition model 20
6 Restrictions on transition model 21
7 Descriptive statistics for stock population 22
8 Parameter estimates for latent model: conditional means and thresholds 23
$9 \quad$ Parameter estimates for latent model: parameterized covariance matrix 24
10 Health and risk factor trends for replenishing cohorts, prevalences relative to 2009 25
11 Education trends for replenishing cohorts, prevalences relative to 2009 26
12 Social trends for replenishing cohorts, prevalences relative to 2009 27
13 Data-splitting validation of 1999 cohort: Mortality in 2001, 2007, and 2013 28
14 Data-splitting validation of 1999 cohort: Demographic outcomes in 2001, 2007, and 2013 28
15 Data-splitting validation of 1999 cohort: Binary health outcomes in 2001, 2007, and 2013 28
16 Data-splitting validation of 1999 cohort: Risk factor outcomes in 2001, 2007, and 201331 17 Data-splitting validation of 1999 cohort: Binary economic outcomes in 2001, 2007, and 2013 31
18 Population forecasts: Census compared to FAM 32

This appendix describes technical details to support the paper "Measuring the COVID-19 Mortality Burden in the United States: A Microsimulation Study". In addition to outcomes described in the paper, the microsimulation provides additional outcomes (e.g. medical expenditures and social security benefits). As the data sources and models are intricately connected, we report all data sources and methodology to provide a complete picture of the microsimulation to the reader. However, the sections that are most relevant to this paper are: section 1 for an overview; data source sections 2.1 (PSID), 2.2 (HRS), and 2.3 (MEPS); sections 3 and 4 for estimation of the transition model and the model for new cohorts, respectively; section 6 for the implementation; section 7 for validation strategies; and section 8 for baseline forecasts.

1 Functioning of the dynamic model

1.1 Background

The Future Elderly Model (FEM) is a microsimulation model originally developed out of an effort to examine health and health care costs among the elderly Medicare population (age $65+$). A description of the previous incarnation of the model can be found in Goldman et al. (2004). The original work was founded by the Centers for Medicare and Medicaid Services and carried out by a team of researchers composed of Dana P. Goldman, Paul G. Shekelle, Jayanta Bhattacharya, Michael Hurd, Geoffrey F. Joyce, Darius N. Lakdawalla, Dawn H. Matsui, Sydne J. Newberry, Constantijn W. A. Panis and Baoping Shang.

Since then various extensions have been implemented to the original model. The most recent version of the FEM now projects health outcomes for all Americans aged 51 and older and uses the Health and Retirement Study (HRS) as a host dataset rather than the Medicare Current Beneficiary Survey (MCBS). The work has also been extended to include economic outcomes such as earnings, labor force participation and pensions. This work was funded by the National Institute on Aging through its support of the RAND Roybal Center for Health Policy Simulation (P30AG024968), the Department of Labor through contract J-9-P-2-0033, the National Institutes of Aging through the R01 grant "Integrated Retirement Modeling" (R01AG030824) and the MacArthur Foundation Research Network on an Aging Society.

This document describes the Future Adult Model (FAM), the development of the model to forecast Americans aged 25 and older. FAM uses the Panel Survey of Income Dynamics (PSID) as the host dataset. In addition to modeling health, health care costs, and economic outcomes, FAM also models life events such as changes in marital status and childbearing. Development of FAM is suported by the National Institutes of Aging through the USC Roybal Center for Health Policy Simulation (5P30AG024968-13) and the MacArthur Foundation Research Network on an Aging Society.

1.2 Overview

The defining characteristic of the model is the modeling of real rather than synthetic cohorts, all of whom are followed at the individual level. This allows for more heterogeneity in behavior than would be allowed by a cell-based approach. Also, since the PSID interviews both respondent and spouse, we can link records to calculate household-level outcomes, which depend on the responses of both spouses.

The model has three core components:

- The replenishing cohort module predicts the economic and health outcomes of new cohorts of $25 / 26$ year-olds. This module takes in data from the Panel Survey of Income Dynamics (PSID) and trends calculated from other sources. It allows us to generate cohorts as the simulation proceeds, so that we can measure outcomes for the age $25+$ population in any given year.
- The transition module calculates the probabilities of transiting across various health states and financial outcomes. The module takes as inputs risk factors such as smoking, weight, age and education, along with lagged health and financial states. This allows for a great deal of heterogeneity and fairly general feedback effects. The transition probabilities are estimated from the longitudinal data in the PSID.
- The policy outcomes module aggregates projections of individual-level outcomes into policy outcomes such as taxes, medical care costs, and disability benefits. This component takes account of public and private program rules to the extent allowed by the available outcomes.

Figure 1: Architecture of the FAM
Figure 1 provides a schematic overview of the model. In this example, we start in 2014 with an initial population aged $25+$ taken from the PSID. We then predict outcomes using our estimated transition probabilities (see section 3.1). Those who survive make it to the end of that year, at which point we calculate policy outcomes for the year. We then move to the following time period (two years later), when a replenishing cohort of 25 and 26 year-olds enters (see section 4). This entrance forms the new age $25+$ population, which then proceeds through the transition model as before. This process is repeated until we reach the final year of the simulation.

1.3 Comparison with other microsimulation models of health expenditures

The precursor to the FAM, the FEM, was unique among models that make health expenditure projections. It was the only model that projected health trends rather than health expenditures. It was also unique in generating mortality projections based on assumptions about health trends rather than historical time series.

FAM extends FEM to younger ages, adding additional dimensions to the simulation. Events over the life course, such as marital status and childbearing are simulated. Labor force participation is modeled in greater detail, distinguishing between out-of-labor force, unemployed, working parttime, and working full-time.

1.3.1 CBOLT Model

The Congressional Budget Office (CBO) uses time-series techniques to project health expenditure growth in the short term and then makes an assumption on long-term growth. They use a long term growth of excess costs of 2.3 percentage points starting in 2020 for Medicare. They then assume a reduction in excess cost growth in Medicare of 1.5% through 2083, leaving a rate of 0.9% in 2083. For non-Medicare spending they assume an annual decline of 4.5%, leading to an excess growth rate in 2083 of 0.1%.

1.3.2 Centers for Medicare and Medicaid Services

The Centers for Medicare and Medicaid Services (CMS) performs an extrapolation of medical expenditures over the first ten years, then computes a general equilibrium model for years 25 through 75 and linearly interpolates to identify medical expenditures in years 11 through 24 of their estimation. The core assumption they use is that excess growth of health expenditures will be one percentage point higher per year for years 25-75 (that is if nominal GDP growth is 4%, health care expenditure growth will be 5%).

1.3.3 MINT Model

Modeling Income in the Near Term (MINT) is a microsimulation model developed by the Urban Institute and others for the Social Security Administration to enable policy analysis of proposed changes to Social Security benefits and payroll taxes Smith and Favreault (2013). MINT uses the Survey of Income and Program Participation (SIPP) as the base data and simulates a range of outcomes, with a focus on those that will impact Social Security. Recent extensions have included health insurance coverage and out-of-pocket medical expenditures. Health enters MINT via selfreported health status and self-reported work limitations. MINT simulates marital status and fertility.

2 Data sources used for estimation

The Panel Survey of Income Dynamics is the main data source for the model. We estimate models for assigning characteristics for the replacement cohorts in Replenishing Conditions Module. These are summarized in Table 1. We estimate transition models for the entire PSID population in the Transition Model Module. Transitioned outcomes are described in Table 2.

2.1 Panel Survey of Income Dynamics

The Panel Survey of Income Dynamics (PSID), waves 1999-2013 are used to estimate the transition models. PSID interviews occur every two years. We create a dataset of respondents who have formed their own households, either as single heads of households, cohabitating partners, or married partners. These heads, wives, and "wives" (males are automatically assigned head of household status by the PSID if they are in a couple) respond to the richest set of PSID questions, including the health questions that are critical for our purposes.

We use all respondents age 25 and older. When appropriately weighted, the PSID is representative of U.S. households. We also use the PSID as the host data for full population simulations that begin in 2009. Respondents age 25 and 26 are used as the basis for the synthetic cohorts that
we generate, used for replenishing the sample in population simulations or as the basis of cohort scenarios.

The PSID continually adds new cohorts that are descendents (or new partners/spouses of descendents). Consequently, updating the simulation to include more recent data is straightforward.

2.2 Health and Retirement Study

The Health and Retirement Study (HRS), waves 1998-2012 are pooled with the PSID for estimation of mortality and widowhood models. The HRS has a similar structure to the PSID, with interviews occurring every two years. The HRS data is harmonized to the PSID for all relevant variables. We use the dataset created by RAND (RAND HRS, version O) as our basis for the analysis. We use all cohorts in the analysis. When appropriately weighted, the HRS in 2010 is representative of U.S. households where at least one member is at least 51. Compared to the PSID, the HRS includes more older Hispanics and interviews more respondents once they have entered nursing homes.

2.3 Medical Expenditure Panel Survey

The Medical Expenditure Panel Survey (MEPS), beginning in 1996, is a set of large-scale surveys of families and individuals, their medical providers (doctors, hospitals, pharmacies, etc.), and employers across the United States. The Household Component (HC) of the MEPS provides data from individual households and their members, which is supplemented by data from their medical providers. The Household Component collects data from a representative sub sample of households drawn from the previous year's National Health Interview Survey (NHIS). Since NHIS does not include the institutionalized population, neither does MEPS: this implies that we can only use the MEPS to estimate medical costs for the non-elderly (25-64) population. Information collected during household interviews include: demographic characteristics, health conditions, health status, use of medical services, sources of medical payments, and body weight and height. Each year the household survey includes approximately 12,000 households or 34,000 individuals. Sample size for those aged $25-64$ is about 15,800 in each year. MEPS has comparable measures of social-economic (SES) variables as those in PSID, including age, race/ethnicity, educational level, census region, and marital status. We estimate expenditures and utilization using 2007-2010 data.

See Section 5.1 for a description. FAM also uses MEPS 2001-2003 data for QALY model estimation.

2.4 Medicare Current Beneficiary Survey

The Medicare Current Beneficiary Survey (MCBS) is a nationally representative sample of aged, disabled and institutionalized Medicare beneficiaries. The MCBS attempts to interview each respondent twelve times over three years, regardless of whether he or she resides in the community, a facility, or transitions between community and facility settings. The disabled (under 65 years of age) and oldest-old (85 years of age or older) are over-sampled. The first round of interviewing was conducted in 1991. Originally, the survey was a longitudinal sample with periodic supplements and indefinite periods of participation. In 1994, the MCBS switched to a rotating panel design with limited periods of participation. Each fall a new panel is introduced, with a target sample size of 12,000 respondents and each summer a panel is retired. Institutionalized respondents are interviewed by proxy. The MCBS contains comprehensive self-reported information on the health
status, health care use and expenditures, health insurance coverage, and socioeconomic and demographic characteristics of the entire spectrum of Medicare beneficiaries. Medicare claims data for beneficiaries enrolled in fee-for-service plans are also used to provide more accurate information on health care use and expenditures. MCBS years 2007-2010 are used for estimating medical cost and enrollment models. See section 5.1 for discussion.

3 Estimation

In this section we describe the approach used to estimate the transition model, the core of the FAM, and the initial cohort model which is used to rejuvenate the simulation population.

3.1 Transition model

We consider a large set of outcomes for which we model transitions. Table 5 gives the set of outcomes considered for the transition model along with descriptive statistics and the population at risk when estimating the relationships.

Since we have a stock sample from the age $25+$ population, each respondent goes through an individual-specific series of intervals. Hence, we have an unbalanced panel over the age range starting from 25 years old. Denote by $j_{i 0}$ the first age at which respondent i is observed and $j_{i T_{i}}$ the last age when he is observed. Hence we observe outcomes at ages $j_{i}=j_{i 0}, \ldots, j_{i T_{i}}$.

We first start with discrete outcomes which are absorbing states (e.g. disease diagnostic, mortality, benefit claiming). Record as $h_{i, j_{i}, m}=1$ if the individual outcome m has occurred as of age j_{i}. We assume the individual-specific component of the hazard can be decomposed in a time invariant and variant part. The time invariant part is composed of the effect of observed characteristics x_{i} that are constant over the entire life course and initial conditions $h_{i, j_{0},-m}$ (outcomes other than the outcome m) that are determined before the first age in which each individual is observed The timevarying part is the effect of previously diagnosed outcomes $h_{i, j_{i}-1,-m}$, on the hazard for $m 乌^{1}$ We assume an index of the form $z_{m, j_{i}}=x_{i} \beta_{m}+h_{i, j_{i}-1,-m} \gamma_{m}+h_{i, j_{0},-m} \psi_{m}$. Hence, the latent component of the hazard is modeled as

$$
\begin{gather*}
h_{i, j_{i}, m}^{*}=x_{i} \beta_{m}+h_{i, j_{i}-1,-m} \gamma_{m}+h_{i, j_{0},-m} \psi_{m}+a_{m, j_{i}}+\varepsilon_{i, j_{i}, m}, \tag{1}\\
m=1, \ldots, M_{0}, j_{i}=j_{i 0}, \ldots, j_{i, T_{i}}, i=1, \ldots, N
\end{gather*}
$$

The term $\varepsilon_{i, j_{i}, m}$ is a time-varying shock specific to age j_{i}. We assume that this last shock is normally distributed and uncorrelated across diseases. We approximate $a_{m, j_{i}}$ with an age spline with knots at ages $35,45,55,65$, and 75 . This simplification is made for computational reasons since the joint estimation with unrestricted age fixed effects for each condition would imply a large number of parameters. The absorbing outcome, conditional on being at risk, is defined as

$$
h_{i, j_{i}, m}=\max \left\{I\left(h_{i, j_{i}, m}^{*}>0\right), h_{i, j_{i}-1, m}\right\}
$$

The occurrence of mortality censors observation of other outcomes in a current year.
A number of restrictions are placed on the way feedback is allowed in the model. Table 6 documents restrictions placed on the transition model. We also include a set of other controls. A list of such controls is given in Table 7 along with descriptive statistics.

We have five other types of outcomes:

[^0]1. First, we have binary outcomes which are not an absorbing state, such as starting smoking. We specify latent indices as in (1) for these outcomes as well but where the lag dependent outcome also appears as a right-hand side variable. This allows for state-dependence.
2. Second, we have ordered outcomes. These outcomes are also modeled as in (1) recognizing the observation rule is a function of unknown thresholds ς_{m}. Similarly to binary outcomes, we allow for state-dependence by including the lagged outcome on the right-hand side.
3. The third type of outcomes we consider are censored outcomes, such as financial wealth. For wealth, there are a non-negligible number of observations with zero and negative wealth. For these, we consider two part models where the latent variable is specified as in (1) but model probabilities only when censoring does not occur. In total, we have M outcomes.
4. The fourth type of outcomes are continuous outcomes modeled with ordinary least squares. For example, we model transitions in $\log (\mathrm{BMI})$. We allow for state-dependence by including the lagged outcome on the right-hand side.
5. The final type of models are categorical, but without an ordering. For example, an individual can transition to being out of the labor force, unemployed, or working (either full- or parttime). In situations like this, we utilize a multinomial logit model, including the lagged outcome on the right-hand side.

The parameters $\theta_{1}=\left(\left\{\beta_{m}, \gamma_{m}, \psi_{m}, \varsigma_{m}\right\}_{m=1}^{M},\right)$, can be estimated by maximum likelihood. Given the normality distribution assumption on the time-varying unobservable, the joint probability of all time-intervals until failure, right-censoring or death conditional on the initial conditions $h_{i, j_{0},-m}$ is the product of normal univariate probabilities. Since these sequences, conditional on initial conditions, are also independent across diseases, the joint probability over all disease-specific sequences is simply the product of those probabilities.

For a given respondent observed from initial age $j_{i 0}$ to a last age $j_{T_{i}}$, the probability of the observed health history is (omitting the conditioning on covariates for notational simplicity)

$$
l_{i}^{-0}\left(\theta ; h_{i, j_{i 0}}\right)=\left[\prod_{m=1}^{M-1} \prod_{j=j_{i 1}}^{j_{T_{i}}} P_{i j, m}(\theta)^{\left(1-h_{i j-1, m}\right)\left(1-h_{i j, M}\right)}\right] \times\left[\prod_{j=j_{i 1}}^{j_{T_{i}}} P_{i j, M}(\theta)\right]
$$

We use the -0 superscript to make explicit the conditioning on $\mathbf{h}_{i, j_{i 0}}=\left(h_{i, j_{i 0}, 0}, \ldots, h_{i, j_{0}, M}\right)^{\prime}$. We have limited information on outcomes prior to this age. The likelihood is a product of M terms with the m th term containing only $\left(\beta_{m}, \gamma_{m}, \psi_{m}, \varsigma_{m}\right)$. This allows the estimation to be done seperately for each outcome.

3.1.1 Further Details on Specific Transition Models

This section describes the modeling strategy for particular outcomes.

Employment Status Ultimately, we wish to simulate if an individual is out of the labor force, unemployed, working part-time, or working full-time at time t. We treat the estimation of this as a two-stage process. In the first stage, we predict if the individual is out of the labor force, unemployed, or working for pay using a multinomial logit model. Then, conditional on working for pay, we estimate if the individual is working part- or full-time using a probit model.

Earnings We estimate last calendar year earnings models based on the current employment status, controlling for the prior employment status. Of particular concern are individuals with no earnings, representing approximately twenty-five percent of the unemployed and seventy-eight percent of those out of the labor force. This group is less than 0.5% of the full- and part-time populations. We use a two-stage process for those out of the labor force and unemployed. The first stage is a probit that estimates if the individual has any earnings. The second stage is an OLS model of \log (earnings) for those with non-zero earnings. For those working full- or part-time, we estimate OLS models of \log (earnings).

Relationship Status We are interested in three relationship statuses: single, cohabitating, and married. In each case, we treat the transition from time t to time $t+1$ as a two-stage process. In the first stage, we estimate if the individual will remain in their current status. In the second stage, we estimate which of the two other states the individual will transition to, conditional on leaving their current state.

Childbearing We estimate the number of children born in two-years separately for women and men. We model this using an ordered probit with three categories: no new births, one birth, and two births. Based on the PSID data, we found the exclusion of three or more births in a two-year period to be appropriate.

3.1.2 Inverse Hyperbolic Sine Transformation

One problem fitting the wealth distribution is that it has a long right tail and some negative values. We use a generalization of the inverse hyperbolic sine transform (IHT) presented in MacKinnon and Magee (1990). First denote the variable of interest y. The hyperbolic sine transform is

$$
\begin{equation*}
y=\sinh (x)=\frac{\exp (x)-\exp (-x)}{2} \tag{2}
\end{equation*}
$$

The inverse of the hyperbolic sine transform is

$$
x=\sinh ^{-1}(y)=h(y)=\log \left(y+\left(1+y^{2}\right)^{1 / 2}\right)
$$

Consider the inverse transformation. We can generalize such transformation, first allowing for a shape parameter θ,

$$
\begin{equation*}
r(y)=h(\theta y) / \theta \tag{3}
\end{equation*}
$$

Such that we can specify the regression model as

$$
\begin{equation*}
r(y)=x \beta+\varepsilon, \varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right) \tag{4}
\end{equation*}
$$

A further generalization is to introduce a location parameter ω such that the new transformation becomes

$$
\begin{equation*}
g(y)=\frac{h(\theta(y+\omega))-h(\theta \omega)}{\theta h^{\prime}(\theta \omega)} \tag{5}
\end{equation*}
$$

where $h^{\prime}(a)=\left(1+a^{2}\right)^{-1 / 2}$.
We specify (4) in terms of the transformation g. The shape parameters can be estimated from the concentrated likelihood for θ, ω. We can then retrieve β, σ by standard OLS.

Upon estimation, we can simulate

$$
\tilde{g}=x \hat{\beta}+\sigma \tilde{\eta}
$$

where η is a standard normal draw. Given this draw, we can retransform using (5) and (2)

$$
\begin{aligned}
& h(\theta(y+\omega))=\theta h^{\prime}(\theta \omega) \tilde{g}+h(\theta \omega) \\
& \tilde{y}=\frac{\sinh \left[\theta h^{\prime}(\theta \omega) \tilde{g}+h(\theta \omega)\right]-\theta \omega}{\theta}
\end{aligned}
$$

The included estimates table (estimates_FAM.xml) gives parameter estimates for the transition models.

4 Model for replenishing cohorts

We first discuss the empirical strategy, then present the model and estimation results. The model for replinishing cohorts integrates information coming from trends among younger cohorts with the joint distribution of outcomes in the current population of age 25 respondents in the PSID.

4.1 Model and estimation

Assume the latent model for $\mathbf{y}_{i}^{*}=\left(y_{i 1}^{*}, \ldots, y_{i M}^{*}\right)^{\prime}$,

$$
\mathbf{y}_{i}^{*}=\mu+\varepsilon_{i},
$$

where ε_{i} is normally distributed with mean zero and covariance matrix $\boldsymbol{\Omega}$. It will be useful to write the model as

$$
\mathbf{y}_{i}^{*}=\mu+\mathbf{L}_{\Omega} \eta_{i}
$$

where \mathbf{L}_{Ω} is a lower triangular matrix such that $\mathbf{L}_{\Omega} \mathbf{L}_{\Omega}^{\prime}=\boldsymbol{\Omega}$ and $\eta_{i}=\left(\eta_{i 1}, \ldots, \eta_{i M}\right)^{\prime}$ are standard normal. We observe $y_{i}=\Gamma\left(y_{i}^{*}\right)$ which is a non-invertible mapping for a subset of the M outcomes. For example, we have binary, ordered and censored outcomes for which integration is necessary.

The vector μ can depend on some variables which have a stable distribution over time \mathbf{z}_{i} (say race, gender and education). This way, estimation preserves the correlation with these outcomes without having to estimate their correlation with other outcomes. Hence, we can write

$$
\mu_{i}=\mathbf{z}_{i} \beta
$$

and the whole analysis is done conditional on \mathbf{z}_{i}.
For binary and ordered outcomes, we fix $\Omega_{m, m}=1$ which fixes the scale. Also we fix the location of the ordered models by fixing thresholds as $\tau_{0}=-\infty, \tau_{1}=0, \tau_{K}=+\infty$, where K denotes the number of categories for a particular outcome. We also fix to zero the correlation between selected outcomes (say earnings) and their selection indicator. Hence, we consider two-part models for these outcomes. Because some parameters are naturally bounded, we also re-parameterize the problem to guarantee an interior solution. In particular, we parameterize

$$
\begin{aligned}
& \Omega_{m, m}=\exp \left(\delta_{m}\right), m=m_{0}-1, \ldots, M \\
& \Omega_{m, n}=\tanh \left(\xi_{m, n}\right) \sqrt{\Omega_{m, m} \Omega_{m, n}}, m, n=1, \ldots, N \\
& \tau_{m, k}=\exp \left(\gamma_{m, k}\right)+\tau_{k-1}, k=2, \ldots, K_{m}-1, m \text { ordered }
\end{aligned}
$$

and estimate the $\left(\delta_{m, m}, \xi_{m, n}, \gamma_{k}\right)$ instead of the original parameters. The parameter values are estimated using the $c m p$ package in Stata (Roodman, 2011). Table 8 gives parameter estimates for the indices while Table 9 gives parameter estimates of the covariance matrix in the outcomes.

4.2 Trends for replenishing cohorts

Using the jointly estimated models previously described, we then assign outcomes to the replenishing cohorts, imposing trends for some health, risk factor, and social outcomes. We currently impose trends on BMI, education, number of children, marital status, hypertension, and smoking status for these 25-26 year olds. These trends are estimated using the National Health Interview Survey (health and risk factors) or the American Community Survey (social outcomes). All trends are halted after 2029. The trends are shown in Table 10, Table 11 and Table 12.

5 Government revenues and expenditures

This gives a limited overview of how revenues and expenditures of the government are computed.

5.1 Medical costs estimation

In the FAM, a cost module links a person's current state-demographics, economic status, current health, risk factors, and functional status to 4 types of individual medical spending. The FAM models: total medical spending (medical spending from all payment sources), Medicare spending ${ }^{2}$, Medicaid spending (medical spending paid by Medicaid), and out of pocket spending (medical spending by the respondent). These estimates are based on pooled weighted least squares regressions of each type of spending on risk factors, self-reported conditions, and functional status, with spending inflated to constant dollars using the medical component of the consumer price index. We use the 2007-2010 Medical Expenditure Panel Survey for these regressions for persons not Medicare eligible, and the 2007-2010 Medicare Current Beneficiary Survey for spending for those that are eligible for Medicare. Those eligible for Medicare include people eligible due to age (65+) or due to disability status. Comparisons of prevalences and question wording across these different sources are provided in Tables 3 and 4, respectively.

In the baseline scenario, this spending estimate can be interpreted as the resources consumed by the individual given the manner in which medicine is practiced in the United States during the post-part D era (2006-2010). Models are estimated for total, Medicaid, out of pocket spending, and for the Medicare spending.

Since Medicare spending has numerous components (Parts A and B are considered here), models are needed to predict enrollment. In 2004, 98.4% of all Medicare enrollees, and $99 \%+$ of aged enrollees, were in Medicare Part A, and thus we assume that all persons eligible for Medicare take Part A. We use the 2007-2010 MCBS to model take up of Medicare Part B for both new enrollees into Medicare, as well as current enrollees without Part B. Estimates are based on weighted probit regression on various risk factors, demographic, and economic conditions. The PSID starting population for the FAM does not contain information on Medicare enrollment. Therefore another model of Part B enrollment for all persons eligible for Medicare is estimated via a probit, and used in the first year of simulation to assign initial Part B enrollment status. Estimation results are shown in estimates table. The MCBS data over represents the portion enrolled in Part B, having a 97% enrollment rate in 2004 instead of the 93.5% rate given by Medicare Trustee's Report. In addition to this baseline enrollment probit, we apply an elasticity to premiums of -0.10 , based on the literature and simulation calibration for actual uptake through 2009 Atherly et al., 2004;

[^1]Buchmueller, 2006). The premiums are computed using average Part B costs from the previous time step and the means-testing thresholds established by the ACA.

Since 2006, the Medicare Current Beneficiaries Survey (MCBS) contains data on Medicare Part D. The data gives the capitated Part D payment and enrollment. When compared to the summary data presented in the CMS 2007 Trustee Report, the 2006 per capita cost is comparable between the MCBS and the CMS. However, the enrollment is underestimated in the MCBS, 53% compared to 64.6% according to CMS.

A cross-sectional probit model is estimated using years 2007-2010 to link demographics, economic status, current health, and functional status to Part D enrollment - see the estimates table. To account for both the initial under reporting of Part D enrollment in the MCBS, as well as the CMS prediction that Part D enrollment will rise to 75% by 2012, the constant in the probit model is increased by 0.22 in 2006, to 0.56 in 2012 and beyond. The per capita Part D cost in the MCBS matches well with the cost reported from CMS. An OLS regression using demographic, current health, and functional status is estimated for Part D costs based on capitated payment amounts.

The Part D enrollment and cost models are implemented in the Medical Cost module. The Part D enrollment model is executed conditional on the person being eligible for Medicare, and the cost model is executed conditional on the enrollment model leading a true result, after the Monte Carlo decision. Otherwise the person has zero Part D cost. The estimated Part D costs are added with Part A and B costs to obtain total Medicare cost, and any medical cost growth assumptions are then applied.

6 Implementation

The FAM is implemented in multiple parts. Estimation of the transition and cross sectional models is performed in Stata. The replenishing cohort model is estimated in Stata using the CMP package (Roodman, 2011). The simulation is implemented in C++ for speed and flexibility. Currently, the simulation is run on Linux, Windows, and Mac OS X.

To match the two year structure of the PSID data used to estimate the transition models, the FAM simulation proceeds in two year increments. The end of each two year step is designed to occur on July 1st to allow for easier matching to population forecasts from Social Security. A simulation of the FAM proceeds by first loading a population representative of the age $25+$ US population in 2009, generated from PSID. In two year increments, the FAM applies the transition models for mortality, health, working, wealth, earnings, and benefit claiming with Monte Carlo decisions to calculate the new states of the population. Once the simulation begins, trends in mortality are applied. Separate mortality rate adjustment factors are defined for the under and over 65 age groups based on the mortality projections from the 2013 SSA Trustees report. The SSA projections are interpolated through 2090, then extended using GLM with log link through 2150. The average yearly all-cause mortality reduction between 2020 and 2150 was 1.06% for ages $25-64$, and 0.66% for the $65+$ population. The population is also adjusted by immigration forecasts from the US Census Department, stratified by race and age. If incoming cohorts are being used, the new 25/26 year olds are added to the population. The number of new $25 / 26$ year olds added is consistent with estimates from the Census, stratified by race. Once the new states have been determined and new $25 / 26$ year olds added, the cross sectional models for medical costs are performed. Summary variables are then computed. Computation of medical costs includes the persons that died to account for end of life costs. To reduce uncertainty due to the Monte Carlo decision rules, the simulation is performed multiple times (typically 100), and the mean of each summary variable is calculated across repetitions.

FAM simulation takes as inputs assumptions regarding the normal retirement age, real medical cost growth, and interest rates. The default assumptions are taken from the 2010 Social Security Intermediate scenario, adjusted for no price increases after 2010. Therefore simulation results are in real 2009 dollars.

Different simulation scenarios are implemented by changing any of the following components: incoming cohort model, transition models, interventions that adjust the probabilities of specific transition, and changes to assumptions on future economic conditions.

6.1 Intervention Module

The intervention module can adjust characteristics of individuals when they are first read into the simulation "init_interventions" or alter transitions within the simulation "interventions." At present, init_interventions can act on chronic diseases, ADL/IADL status, program participation, and some demographic characteristics. Interventions within the simulation can currently act on mortality, chronic diseases, and some program participation variables.

Interventions can take several forms. The most commonly used is an adjustment to a transition probability. One can also delay the assignment of a chronic condition or cure an existing chronic condition. Additional flexibility comes from selecting who is eligible for the intervention. Some examples might help to make the interventions concrete.

- Example 1: Delay the enrollment into Social Security OASI by two years. In this scenario claiming of Social Security benefits is transitioned as normal. However, if a person is predicted to claim their benefits, then that status is not immediately assigned, but is instead assigned two years later.
- Example 2: Cure hypertension for those with no other chronic diseases. In this scenario any individual with hypertension (including those who have had hypertension for many years) is cured (hypertension status is set to 0), as long as they do not have other chronic diseases. This example uses the individuals chronic disease status as the eligibility criteria for the intervention.
- Example 3: Reduce the incidence of hypertension for half of men aged 55 to 65 by 10% in the first year of the simulation, gradually increasing the reduction to 20% after 10 years. This example begins to show the flexibility in the intervention module. The eligibility criteria are more complex (half of men in a specific age range are eligible) and the intervention changes over time. Mathematically, the intervention works by acting on the incidence probability, ρ. In the first year of the simulation, the probability is replaced by $(1-0.5 * 0.1) \rho=0.95 \rho$. The binary outcome is then assigned based on this new probability. Thus, at the population level, there is a 5% reduction in incidence for men aged 55 to 65 , as desired. After 10 years, the probability for this eligible population becomes $(1-0.5 * 0.2) \rho=0.9 \rho$.

More elaborate interventions can be programmed by the user.

7 Validation

We perform data-splitting and external corroboration exercises. Data splitting is a test of the simulations internal validity that compares simulated outcomes to actual outcomes. External corroboration compares model forecasts to others forecasts.

7.1 Data Splitting

The data-splitting exercise randomly samples half of the PSID respondent IDs for use in estimating the transition models. The respondents not used for estimation, but who were present in the PSID sample in 1999, are then simulated from 1999 through 2013. Demographic, health, and economic outcomes are compared between the simulated (FAM) and actual (PSID) populations.

Worth noting is how the composition of the population changes in this exercise. In 1999, the sample represents those 25 and older. Since we follow a fixed cohort, the age of the population will increase to 39 and older in 2013. This has consequences for some measures in later years where the eligible population shrinks.

7.1.1 Demographics

Mortality and demographic measures are presented in Tables 13 and 14 . Mortality incidence is comparable between the simulated and observed populations. Demographic characteristics do not differ between the two, except for age, which is slightly lower in the simulation population.

7.1.2 Health Outcomes

Binary health outcomes are presented in Table 15. FAM underestimates the prevalence of IADL limitations compared to the actual population. Binary outcomes, like diabetes, heart disease, lung disease and stroke do not differ. FAM overestimates cancer and hypertension compared to the actual population.

7.1.3 Health Risk Factors

Risk factors are presented in Table 16. FAM overestimates average BMI and underestimates smoking behavior compared to the actual population. In terms of practical significance, this difference in average BMI is equivalent to 1.4 pounds for an individual who is 58 .

7.1.4 Economic Outcomes

Binary economic outcomes are presented in Table 17. FAM underpredicts claiming of federal disability claiming. Social Security retirement claiming, Supplemental Security claiming, and working for pay are not statistically different between FAM and the actual population.

On the whole, the data-splitting exercise is reassuring. There are differences that will be explored and improved upon in the future.

7.2 External Corroboration

Finally, we compare FAM population forecasts to Census forecasts of the US population. Here, we focus on the full PSID population (25 and older) and those 65 and older. For this exercise, we begin the simulation in 2009 and simulate the full population through 2049. Population projections are compared to the 2012 Census projections for years 2012 through 2049. See resuts in Table 18. By 2049, FAM forecasts for 25 and older remain within 2% of Census forecasts.

8 Baseline Forecasts

In this section we present baseline forecasts of the Future Adult Model. The figures show data from the PSID for the $25+$ population from 1999 through 2009 and forecasts from the FAM for the 25+ population beginning in 2009.

8.1 Disease Prevalence

Figure 2 depicts the six chronic conditions we project for men. And Figure 3 depicts the historic and forecasted values for women.

Figure 4 shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any IADL difficulties, and two or more IADL difficulties for men 25 and older. Figure 5 shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any IADL difficulties, and two or more IADL difficulties for women 25 and older.

9 Acknowledgments

The Future Elderly Model and Future Adult Model has been developed by a large team over the last decade. Jay Bhattacharya, Eileen Crimmins, Christine Eibner, Étienne Gaudette, Geoff Joyce, Darius Lakdawalla, Pierre-Carl Michaud, and Julie Zissimopoulos have all provided expert guidance. Adam Gailey, Baoping Shang, and Igor Vaynman provided programming and analytic support during the first years of FEM development at RAND. Jeff Sullivan then led the technical development for several years. More recently, the University of Southern California research programming team has supported model development, including FAM development. These programmers include Patricia St. Clair, Laura Gascue, Henu Zhao, and Yuhui Zheng. Barbara Blaylock, Malgorzata Switek, and Wendy Cheng have greatly aided model development while working as research assistants at USC.

10 Tables

Economic Outcomes Health Outcomes Other Outcomes
Work Status
Earnings
Wealth
BMI Category Smoking Category Hypertension
Education
Partnered
Partner Type
Health Insurance

Table 1: Estimated outcomes in replenishing cohorts module

$$
\begin{array}{ll}
\text { Health Outcomes } & \text { Marital Status } \\
\text { Mortality } & \text { Exit Single } \\
\text { Heart Disease } & \text { Exit Cohabitation } \\
\text { Cancer } & \text { Exit Married } \\
\text { Hypertension } & \text { Single to Married } \\
\text { Diabetes } & \text { Cohabitation to Married } \\
\text { Lung Disease } & \text { Married to Cohabitation } \\
\text { Start Smoking } & \\
\text { Stop Smoking } & \\
\text { ADL Status } & \\
\text { IADL Status } & \\
\text { Births/Paternity } & \\
\text { Self-reported Health } & \\
\text { BMI } & \\
\text { Partner Death } &
\end{array}
$$

Table 2: Estimated outcomes in transitions module

$$
\begin{aligned}
& \text { Other Outcomes } \\
& \text { Insurance Type }
\end{aligned}
$$

Prevalence \%

		Prevalence $\%$						
Source (years, ages)	Cancer	Heart Diseases	Stroke	Diabetes	Hypertension	Lung Disease	Overweight	Obese
HRS (2004-2008, 50-64)	8%	14%	4%	16%	45%	7%	37%	37%
HRS (2004-2008, 65+)	19%	31%	11%	23%	63%	11%	38%	27%
MCBS (2007-2010, 65+)	19%	41%	11%	25%	68%	17%	38%	26%
MEPS (2007-2010, 25-49)	2%	6%	1%	4%	18%	4%	35%	30%
MEPS (2007-2010, 50-64)	6%	16%	4%	14%	46%	7%	37%	34%
MEPS (2007-2010, 65+)	14%	36%	12%	21%	68%	11%	38%	27%
NHIS (2007-2009, 25-49)	2%	6%	1%	4%	16%	4%	34%	31%
NHIS (2007-2009, 50-64)	7%	14%	3%	13%	41%	7%	36%	35%
NHIS (2007-2009, 65+)	17%	32%	9%	19%	61%	10%	36%	27%
PSID (2007-2011, 25-49)	2%	4%	1%	4%	12%	3%	34%	28%
PSID (2007-2011, 50-64)	6%	14%	3%	13%	34%	8%	39%	30%
PSID (2007-2011, 65+)	16%	34%	8%	20%	54%	14%	38%	23%
		Table 3: Health condition prevalences in survey data						

	Survey			
Disease	PSID/HRS	NHIS	MEPS	MCBS
Cancer	Has a doctor ever told you that you have cancer or a malignant tumor, excluding minor skin cancers?	Have you ever been told be a doctor or other health professional that you had cancer or a malignanacy of any kind? (WHEN RECODED, SKIN CANCERS WERE EXCLUDED)	List all the conditions that have bothered (the person) from (START time) to (END time) CCS codes for the conditions list are 11-21, 24-45	Has a doctor ever told you that you had any (other) kind of cancer malignancy, or tumor other than skin cancer?
Heart Diseases	Has a doctor ever told you that you had a heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems?	Four separate questions were asked about whether ever told by a docotor or oither health professional that had: CHD, Angina, MI, other heart problems.	Have you ever been told by a doctor or health professional that you have CHD; Angina; MI; other heart problems	Six separate questions were asked about whether ever told by a doctor that had: Angina or MI; CHD; other heart problems (included four questions)
Stroke	Has a doctor ever told you that you had a stroke?	Have you EVER been told by a doctor or other health professional that you had a stroke?	If Female, add: [Other than during pregnancy,] Have you ever been told by a doctor or health professional that you have a stroke or TIA (transient ischemic attack)	[Since (PREV < SUPP. RD. INT. DATE),] has a doctor (ever) told (you/SP) that (you/he/she) had a stroke, a brain hemorrhage, or a cerebrovascular accident?
Diabetes	Has a doctor ever told you that you have diabetes or high blood sugar?	If Female, add: [Other than during pregnancy,] Have you ever been told by a doctor or health professional that you have diabetes or sugar diabetes?	If Female, add: [Other than during pregnancy,] Have you hever been told by a doctor or health professional that you have diabetes or sugar diabetes?	Has a doctor (ever) told (you/SP) that (you/he/she) had diabetes, high blood sugar, or sugar in (your/his/her) urine? [DO NOT INCLUDE BOERDERLINE PREGNANCY, OR PREDIABETEIC DIABETES.]
Hypertension	Has a doctor ver told you that you have high blood pressure or hypertension?	Have you EVER been told by a doctor or other health professional that you had Hypertension, also called high blood pressure?	Have you EVER been told by a doctor or other health professional that you had Hypertension, also called high blood pressure?	Has a doctor (ever) told (you/SP) that (you/he/she) (still) (had) (have/has) hypertension, sometimes called high blood pressure?
Lung Disease	Has a doctor ever told you that you have chronic lung disease such a schronic bronchitis or emphysema? [IWER: DO NOT INCLUDE ASTHMA]	Question 1: During the PAST 12 MONTHS, have you ever been told by a doctor or other health professional that you had chronic bronchitis? Question 2: Have you EVER been told by a docotor or other health professional that you had emphysema?	List all the conditions that have bothered (the person) from (START time) to (END time) CCS codes for the conditions list are 127, 129-312	Has a doctor (ever) told (you/SP) that (you/he/she) had emphysema, asthma, or COPD? $[\mathrm{COPD}=\mathrm{CHRONIC}$ OBSTRUCTIVE PULMONARY DISEASE.]
Overweight Obese		Self-reported bo	weight and height	

Table 4: Survey questions used to determine health conditions

Table 5: Outcomes in the transition model. Estimation sample is PSID 1999-2013 waves.

| | Standard
 Control variable Mean | | | Minimum |
| :--- | ---: | ---: | ---: | ---: | Maximum

Table 7: Desciptive statistics for variables in 2009 PSID ages $25+$ sample used as simulation stock population
$\begin{array}{lrrrrrrrr} & & & & & & \text { Number of } \\ \text { biological }\end{array}$ waves

	Education level	Partnered	Partnership type	Weight status	Smoking status	Hypertension	In labor force	Number of biological children
Education level	1.000							
Partnered	-0.207	1.000						
Partnership type	0.562	0.000	1.000					
Weight status	0.134	-0.028	0.112	1.000				
Smoking status	0.003	-0.126	-0.181	-0.021	1.000			
Hypertension	0.014	-0.078	0.052	0.313	0.013	1.000		
In labor force	0.020	-0.147	-0.032	-0.019	-0.002	-0.004	1.000	
Number of biological children	-0.360	0.378	0.076	-0.003	-0.005	0.021	-0.180	1.000

Year	Hypertension	Overweight	Obese 1	Obese 2	Obese 3	Never Smoked	Former Smoker	Current Smoker
2009	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2010	1.00	1.00	1.03	1.01	1.01	1.00	1.00	0.99
2011	0.99	1.00	1.06	1.01	1.03	1.01	0.99	0.98
2012	0.99	1.00	1.08	1.01	1.04	1.01	0.99	0.98
2013	1.00	1.00	1.10	1.02	1.06	1.01	0.99	0.97
2014	1.00	1.01	1.12	1.02	1.07	1.02	0.98	0.96
2015	1.00	1.00	1.14	1.03	1.08	1.02	0.98	0.95
2016	1.01	1.02	1.17	1.03	1.10	1.03	0.98	0.94
2017	1.01	1.03	1.19	1.04	1.11	1.03	0.97	0.94
2018	0.98	1.09	1.20	1.05	1.13	1.03	0.97	0.93
2019	0.98	1.09	1.23	1.06	1.14	1.04	0.97	0.92
2020	0.99	1.09	1.24	1.08	1.16	1.04	0.96	0.91
2021	0.99	1.09	1.26	1.09	1.17	1.04	0.96	0.91
2022	0.98	1.09	1.28	1.11	1.19	1.05	0.95	0.90
2023	0.98	1.09	1.29	1.13	1.20	1.05	0.95	0.89
2024	0.98	1.08	1.30	1.15	1.22	1.05	0.95	0.88
2025	0.98	1.07	1.31	1.18	1.24	1.06	0.94	0.87
2026	0.99	1.06	1.32	1.21	1.25	1.06	0.94	0.87
2027	0.99	1.04	1.34	1.24	1.27	1.06	0.94	0.86
2028	0.99	0.98	1.43	1.25	1.28	1.07	0.93	0.85
2029	1.01	0.97	1.46	1.26	1.30	1.07	0.93	0.84
2030	1.01	0.97	1.46	1.26	1.30	1.07	0.93	0.84
2031	1.01	0.97	1.46	1.26	1.30	1.07	0.93	0.84
2032	1.01	0.97	1.46	1.26	1.30	1.07	0.93	0.84
2033	1.01	0.97	1.46	1.26	1.30	1.07	0.93	0.84
2034	1.01	0.97	1.46	1.26	1.30	1.07	0.93	0.84
2035	1.01	0.97	1.46	1.26	1.30	1.07	0.93	0.84

Table 10: Health and risk factor trends for replenishing cohorts, prevalences relative to 2009
Table 11: Education trends for replenishing cohorts, prevalences relative to 2009

Year	No Children	One Child	Two Children	Three Chidren	Four or More Children	Partnered	Married
2009	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2010	1.01	1.00	0.99	0.98	0.98	1.00	0.98
2011	1.01	0.99	0.98	0.97	0.95	0.99	0.96
2012	1.02	0.99	0.97	0.95	0.93	0.99	0.94
2013	1.03	0.98	0.96	0.93	0.90	0.99	0.91
2014	1.03	0.98	0.95	0.91	0.88	0.99	0.89
2015	1.04	0.97	0.94	0.90	0.86	0.98	0.87
2016	1.05	0.97	0.92	0.88	0.84	0.98	0.85
2017	1.05	0.96	0.91	0.87	0.82	0.98	0.82
2018	1.06	0.95	0.90	0.85	0.79	0.98	0.80
2019	1.07	0.95	0.89	0.83	0.77	0.98	0.78
2020	1.07	0.94	0.88	0.82	0.75	0.98	0.76
2021	1.08	0.94	0.87	0.80	0.73	0.98	0.73
2022	1.09	0.93	0.86	0.79	0.72	0.97	0.71
2023	1.09	0.93	0.85	0.77	0.70	0.97	0.69
2024	1.10	0.92	0.84	0.76	0.68	0.97	0.66
2025	1.11	0.92	0.83	0.75	0.66	0.97	0.64
2026	1.11	0.91	0.82	0.73	0.63	0.98	0.62
2027	1.12	0.90	0.81	0.72	0.61	0.98	0.60
2028	1.13	0.90	0.80	0.70	0.59	0.98	0.57
2029	1.13	0.89	0.79	0.69	0.59	0.98	0.55
2030	1.13	0.89	0.79	0.69	0.59	0.98	0.55
2031	1.13	0.89	0.79	0.69	0.59	0.98	0.55
2032	1.13	0.89	0.79	0.69	0.59	0.98	0.55
2033	1.13	0.89	0.79	0.69	0.59	0.98	0.98
2034	1.13	0.89	0.79	0.69	0.98	0.55	
2035	1.13	0.89	0.79	0.69	0.55		

Table 12: Social trends for replenishing cohorts, prevalences relative to 2009

Outcome	2001			2007			2013		
	$\begin{aligned} & \text { FAM } \\ & \text { mean } \end{aligned}$	$\begin{aligned} & \hline \text { PSID } \\ & \text { mean } \end{aligned}$	p	$\begin{aligned} & \text { FAM } \\ & \text { mean } \end{aligned}$	$\begin{aligned} & \hline \text { PSID } \\ & \text { mean } \end{aligned}$	p	$\begin{aligned} & \text { FAM } \\ & \text { mean } \end{aligned}$	$\begin{aligned} & \hline \text { PSID } \\ & \text { mean } \end{aligned}$	p
Died	0.014	0.018	0.011	0.020	0.023	0.222	0.025	0.026	0.671

Table 13: Data-splitting validation of 1999 cohort: Mortality in 2001, 2007, and 2013

Outcome	2001			2007			2013		
	$\begin{aligned} & \text { FAM } \\ & \text { mean } \end{aligned}$	$\begin{aligned} & \hline \text { PSID } \\ & \text { mean } \end{aligned}$	p	$\begin{aligned} & \text { FAM } \\ & \text { mean } \end{aligned}$	$\begin{aligned} & \hline \text { PSID } \\ & \text { mean } \end{aligned}$	p	$\begin{aligned} & \text { FAM } \\ & \text { mean } \end{aligned}$	$\begin{aligned} & \hline \text { PSID } \\ & \text { mean } \end{aligned}$	p
Age on July 1st	49.185	49.022	0.467	53.347	53.379	0.887	57.150	57.960	0.000
Black	0.100	0.093	0.104	0.099	0.088	0.011	0.099	0.092	0.173
Hispanic	0.078	0.078	0.994	0.083	0.085	0.553	0.089	0.095	0.250
Male	0.456	0.460	0.543	0.454	0.463	0.246	0.452	0.458	0.501

Table 14: Data-splitting validation of 1999 cohort: Demographic outcomes in 2001, 2007, and 2013

Outcome	2001			2007			2013		
	FAM mean	$\begin{aligned} & \text { PSID } \\ & \text { mean } \end{aligned}$	p	FAM mean	$\begin{aligned} & \text { PSID } \\ & \text { mean } \end{aligned}$	p	FAM mean	$\begin{aligned} & \text { PSID } \\ & \text { mean } \end{aligned}$	p
Any ADLs	0.081	0.064	0.000	0.110	0.126	0.001	0.134	0.142	0.177
Any IADLs	0.103	0.113	0.021	0.115	0.130	0.005	0.137	0.170	0.000
Cancer	0.037	0.035	0.369	0.064	0.054	0.004	0.092	0.077	0.002
Diabetes	0.067	0.062	0.136	0.099	0.090	0.042	0.134	0.127	0.198
Heart Disease	0.102	0.106	0.365	0.134	0.152	0.001	0.167	0.173	0.356
Hypertension	0.180	0.169	0.051	0.274	0.257	0.012	0.364	0.344	0.010
Lung Disease	0.038	0.039	0.641	0.061	0.058	0.293	0.083	0.091	0.112
Stroke	0.021	0.020	0.482	0.029	0.032	0.399	0.039	0.037	0.466

Table 15: Data-splitting validation of 1999 cohort: Binary health outcomes in 2001, 2007, and 2013

Figure 2: Historic and Forecasted Chronic Disease Prevalence for Men 25+

Figure 3: Historic and Forecasted Chronic Disease Prevalence for Women 25+

Figure 4: Historic and Forecasted ADL and IADL Prevalence for Men 25+

Figure 5: Historic and Forecasted ADL and IADL Prevalence for Women 25+

				2001			2007				2013		
	Outcome	FAM	PSID		FAM	PSID		FAM	PSID				
mean	mean	p	mean	mean	p	mean	mean	p					
BMI	26.820	26.757	0.407	27.511	27.440	0.423	27.959	27.742	0.033				
Current smoker	0.187	0.200	0.018	0.157	0.167	0.084	0.133	0.146	0.033				
Ever smoked	0.474	0.513	0.000	0.470	0.525	0.000	0.462	0.531	0.000				

Table 16: Data-splitting validation of 1999 cohort: Risk factor outcomes in 2001, 2007, and 2013

	2001			2007					2013		
	FAM	PSID		FAM	PSID		FAM	PSID			
Outcome	mean	mean	p	mean	mean	p	mean	mean	p		
Claiming SSDI	0.017	0.023	0.004	0.020	0.033	0.000	0.027	0.049	0.000		
Claiming OASI	0.190	0.192	0.723	0.217	0.218	0.887	0.279	0.284	0.552		
Claiming SSI	0.017	0.016	0.409	0.015	0.016	0.439	0.015	0.017	0.289		
Working for pay	0.651	0.683	0.000	0.625	0.657	0.000	0.595	0.598	0.660		

Table 17: Data-splitting validation of 1999 cohort: Binary economic outcomes in 2001, 2007, and 2013

Year	Census $25+$	FAM Minimal $25+$	Census $65+$	FAM Minimal $65+$
2009	202.1	202.0	39.6	39.4
2011	206.6	206.3	41.4	40.8
2013	211.0	210.1	44.7	43.7
2015	215.9	214.7	47.7	46.8
2017	220.9	219.3	50.8	49.8
2019	225.5	223.9	54.2	52.4
2021	229.8	228.1	57.7	55.8
2023	233.9	231.7	61.4	58.1
2025	238.0	235.9	65.1	62.0
2027	241.9	239.7	68.4	65.5
2029	245.7	243.6	71.4	69.1
2031	249.3	247.4	73.8	72.1
2033	252.9	250.9	75.5	73.6
2035	256.0	254.1	77.3	76.1
2037	259.2	257.1	78.8	76.8
2039	262.6	260.3	79.4	77.5
2041	265.8	263.8	79.9	77.7
2043	269.0	266.7	80.4	78.7
2045	272.2	270.0	81.3	80.0
2047	275.3	273.1	82.2	81.1
2049	278.4	275.7	83.2	81.4

Table 18: Population forecasts: Census compared to FAM

References

Atherly, A., Dowd, B. E., and Feldman, R. (2004). The effect of benefits, premiums, and health risk on health plan choice in the medicare program. Health services research, 39(4p1):847-864.

Buchmueller, T. (2006). Price and the health plan choices of retirees. Journal of Health Economics, 25(1):81-101.

Goldman, D. P., Shekelle, P. G., Bhattacharya, J., Hurd, M., and Joyce, G. F. (2004). Health status and medical treatment of the future elderly. Technical report, DTIC Document.

MacKinnon, J. G. and Magee, L. (1990). Transforming the dependent variable in regression models. International Economic Review, pages 315-339.

Roodman, D. (2011). Fitting fully observed recursive mixed-process models with cmp. Stata Journal, 11(2):159-206(48).

Smith, K. and Favreault, M. (2013). A primer on modeling income in the near term, version 7. Technical report, The Urban Institute.

This file provides supplementary details for the paper:
Title: Measuring the COVID-19 Mortality Burden in the United States: A Microsimulation Study
Authors: Julian Reif, Hanke Heun-Johnson, Bryan Tysinger, and Darius Lakdawalla
The following sheets contain transition model estimates for relevant variables in the Future Adult Model, for the population ages 25-54 years in 2020.

Binaries

This worksheet reports estimates of the probability of developing a chronic condition (stroke, heart disease, cancer, hypertension, diabetes, and lung disease), of exercise status, of initiating smoking, and of ceasing smoking.

Ordered probits

This worksheet reports estimates of the probability of changing ADL and IADL status.

OLS
This worksheet reports estimates of how BMI is updated in the microsimulation.

Mortality \& nursing home

This worksheet reports estimates of the probability of dying, of one's partner dying, and of living in nursing home (ages 55+only).
These models are estimated on a combined sample of PSID and HRS respondents.

	coef	p-value														
Non-hispanic black	$0.136^{* * *}$	0.050	0.001		-0.011	0.040	-0.000		-0.345***	0.018	-0.076		-0.186***	0.048	-0.003	
Hispanic	-0.015	0.099	-0.000		-0.198**	0.093	-0.005		-0.231***	0.033	-0.052		-0.352***	0.117	-0.005	
Less than HS/GED	$0.134^{* * *}$	0.042	0.001		$0.187^{* * *}$	0.044	0.006		-0.315***	0.023	-0.072		-0.058	0.053	-0.001	
College	-0.108**	0.054	-0.001		-0.080**	0.038	-0.002		$0.324^{* *}$	0.020	0.058		0.072*	0.037	0.001	
Beyond college	-0.225***	0.085	-0.001		-0.063	0.052	-0.002		$0.411^{* * *}$	0.030	0.067		0.017	0.051	0.000	
Male	-0.479	1.025	-0.004		-0.145	0.556	-0.004		$0.074 * *$	0.026	0.015		-0.203	0.884	-0.004	
Black male	0.098	0.074	0.001		-0.085	0.053	-0.002		0.030	0.025	0.006		-0.007	0.068	-0.000	
Hispanic male	-0.230	0.167	-0.001		-0.096	0.099	-0.002		-0.049	0.038	-0.010		0.017	0.126	0.000	
Poor as a child	0.012	0.038	0.000		0.044*	0.026	0.001		-0.007	0.012	-0.001		0.052*	0.029	0.001	
Wealthy as a child	0.109**	0.049	0.001		0.041	0.033	0.001		-0.083***	0.015	-0.017		0.011	0.038	0.000	
Childhood health - fair	-0.046	0.146	-0.000		-0.189*	0.106	-0.004		0.126**	0.055	0.024		-0.058	0.131	-0.001	
Childhood health - good	-0.137	0.129	-0.001		-0.239***	0.092	-0.006		$0.136 * * *$	0.048	0.026		-0.072	0.115	-0.001	
Childhood health - very good	-0.167	0.126	-0.001		-0.355***	0.090	-0.008		$0.231 * * *$	0.048	0.044		-0.134	0.113	-0.002	
Childhood health - excellent	-0.200	0.124	-0.002		-0.350***	0.088	-0.011		$0.258 * * *$	0.047	0.053		-0.097	0.111	-0.002	
Age spline, less than 35	0.004	0.021	0.000		0.008	0.012	0.000		-0.007**	0.003	-0.001		0.012	0.014	0.000	
Age spline, 35 to 44	0.027**	0.014	0.000		$0.025^{* *}$	0.008	0.001		$-0.017^{* * *}$	0.003	-0.004		0.018**	0.009	0.000	
Age spline, 45 to 54	0.006	0.011	0.000		0.000	0.007	0.000		-0.011***	0.002	-0.002		$0.027^{* *}$	0.008	0.000	
Age spline, 55 to 64	0.024**	0.010	0.000		0.016**	0.008	0.000		-0.012***	0.003	-0.002		0.015**	0.008	0.000	
Age spline, 65 to 74	0.006	0.011	0.000		$0.025^{* *}$	0.009	0.001		-0.016***	0.003	-0.003		0.015*	0.009	0.000	
Age spline, more than 75	0.031***	0.008	0.000		$0.032^{* * *}$	0.007	0.001		$-0.034^{* * *}$	0.003	-0.007		0.010	0.007	0.000	
Male, age spline less than 35	0.014	0.034	0.000		0.004	0.019	0.000						-0.008	0.030	-0.000	
Male, age spline 35 to 44	-0.008	0.021	-0.000		0.002	0.012	0.000						0.020	0.018	0.000	
Male, age spline 45 to 54	0.018	0.016	0.000		$0.026^{* *}$	0.010	0.001						0.017	0.013	0.000	
Male, age spline 55 to 64	-0.004	0.015	-0.000		-0.004	0.011	-0.000						0.022**	0.011	0.000	
Male, age spline 65 to 74	0.003	0.016	0.000		-0.006	0.012	-0.000						-0.004	0.012	-0.000	
Male, age spline over 75	-0.010	0.013	-0.000		-0.011	0.011	-0.000						0.013	0.011	0.000	
Lag of Doctor ever - heart disease	0.295***	0.041	0.003													
Lag of Doctor ever - cancer	0.102	0.070	0.001													
Lag of Doctor ever - hypertension	0.305***	0.038	0.003		0.309***	0.027	0.011									
Lag of Doctor ever-diabetes	$0.173^{* * *}$	0.047	0.002		$0.167^{* * *}$	0.037	0.006									
Lag of Ever smoked cigarettes	0.094**	0.040	0.001		$0.085^{* *}$	0.027	0.002						0.052*	0.030	0.001	
Lag of Current smoker	$0.181^{* * *}$	0.046	0.002		$0.175^{* * *}$	0.032	0.006						$0.133^{* * *}$	0.038	0.003	
Lag of Any light or heavy physical activity	$-0.158^{* * *}$	0.039	-0.001		-0.062**	0.030	-0.002		0.969 ***	0.013	0.273		0.034	0.036	0.001	
Log(BMI) spline, $\mathrm{BMI}<30$	-0.401***	0.141	-0.003		-0.028	0.101	-0.001						-0.052	0.108	-0.001	
Log(BMI) spline, $\mathrm{BMI}>30$	0.315*	0.166	0.003		$0.898^{* * *}$	0.111	0.025						$0.515^{* * *}$	0.136	0.009	
Black, Less than HS					-0.055	0.065	-0.001		$0.122^{* * *}$	0.032	0.023		0.039	0.085	0.001	
Black, College					-0.018	0.088	-0.001		-0.020	0.039	-0.004		-0.033	0.102	-0.001	
Black, Beyond College					-0.199	0.155	-0.004		0.041	0.066	0.008		0.017	0.156	0.000	
Hispanic, Less than HS					-0.116	0.114	-0.003		0.014	0.043	0.003		0.088	0.150	0.002	
Hispanic, College					0.249	0.165	0.009		-0.119*	0.069	-0.026		0.287	0.180	0.007	
Hispanic, Beyond College					0.392**	0.195	0.017		0.142	0.109	0.026		0.208	0.246	0.005	
Lag of married from marriage history									$0.105^{* * *}$	0.016	0.022					
Lag of cohab									0.020	0.030	0.004					
Male, previously married									0.006	0.027	0.001					
Male, previously cohabitating									0.038	0.045	0.007					
Lag of Doctor ever - chronic lung disease _cons	-1.790**	0.767			$-2.474^{* * *}$	0.478			$0.499^{* * *}$	0.112			$-2.844^{* * *}$	0.541		

	Hypertension (hibpe) coefficients		Hypertension (hibpe) marginal effects		Diabetes (diabe) coefficients		Diabetes (diabe) marginal effects		Lung disease (lunge) coefficients		Lung disease (lunge) marginal effects		Start smoking (smoke_start) coefficients		Start smoking (smoke_start) marginal effects	
	coef	p-value	coef	p-value	coef	p-value	coef	p-value								
Non-hispanic black	0.240***	0.028	0.022		0.026	0.039	0.001		0.016	0.042	0.000		$0.139^{* * *}$	0.036	0.003	
Hispanic	0.071	0.054	0.006		0.137*	0.073	0.004		-0.092	0.094	-0.002		-0.135**	0.069	-0.003	
Less than HS/GED	0.031	0.036	0.003		$0.130 * * *$	0.047	0.004		$0.243^{* * *}$	0.045	0.006		0.191***	0.048	0.005	
College	-0.039	0.026	-0.003		-0.048	0.040	-0.001		-0.174***	0.047	-0.003		-0.314***	0.036	-0.006	
Beyond college	-0.098**	0.038	-0.008		-0.063	0.055	-0.001		-0.312***	0.077	-0.005		-0.597***	0.070	-0.008	
Male	0.307	0.330	0.027		-0.733	0.620	-0.018		0.107	0.531	0.002		0.507	0.323	0.013	
Black male	$-0.130^{* * *}$	0.037	-0.010		0.101*	0.052	0.003		0.060	0.057	0.001		$0.137^{* * *}$	0.047	0.004	
Hispanic male	-0.126**	0.062	-0.010		0.136*	0.081	0.004		-0.167	0.121	-0.003		0.128	0.080	0.003	
Poor as a child	0.042**	0.019	0.004		0.023	0.026	0.001		0.030	0.029	0.001		0.008	0.025	0.000	
Wealthy as a child	0.009	0.022	0.001		-0.013	0.033	-0.000		0.046	0.036	0.001		0.126***	0.028	0.003	
Childhood health - fair	0.169*	0.089	0.016		0.049	0.117	0.001		-0.062	0.110	-0.001		0.247**	0.124	0.007	
Childhood health - good	0.078	0.080	0.007		-0.068	0.105	-0.002		-0.235**	0.098	-0.004		0.140	0.113	0.004	
Childhood health - very good	0.013	0.079	0.001		-0.051	0.103	-0.001		-0.323***	0.097	-0.005		0.142	0.112	0.003	
Childhood health - excellent	-0.021	0.078	-0.002		-0.072	0.102	-0.002		-0.370***	0.095	-0.008		$0.233^{* *}$	0.111	0.005	
Age spline, less than 35	$0.037^{* *}$	0.008	0.003		0.017	0.012	0.000		0.004	0.011	0.000		-0.025***	0.007	-0.001	
Age spline, 35 to 44	$0.018^{* *}$	0.005	0.001		0.018**	0.008	0.000		0.010	0.008	0.000		-0.010*	0.006	-0.000	
Age spline, 45 to 54	0.030***	0.005	0.003		$0.025 * * *$	0.007	0.001		0.020***	0.007	0.000		-0.026***	0.007	-0.001	
Age spline, 55 to 64	0.010*	0.006	0.001		0.007	0.007	0.000		0.007	0.008	0.000		-0.036***	0.009	-0.001	
Age spline, 65 to 74	0.006	0.008	0.001		0.005	0.009	0.000		0.009	0.010	0.000		-0.018	0.014	-0.000	
Age spline, more than 75	0.020***	0.007	0.002		0.003	0.009	0.000		-0.002	0.009	-0.000		-0.034*	0.018	-0.001	
Male, age spline less than 35	-0.005	0.011	-0.000		0.017	0.020	0.000		-0.010	0.018	-0.000		-0.018	0.011	-0.000	
Male, age spline 35 to 44	0.002	0.007	0.000		0.028**	0.012	0.001		0.003	0.013	0.000		-0.006	0.009	-0.000	
Male, age spline 45 to 54	-0.017**	0.007	-0.001		-0.017*	0.010	-0.000		0.005	0.012	0.000		0.008	0.010	0.000	
Male, age spline 55 to 64	0.007	0.008	0.001		0.022**	0.010	0.001		0.015	0.012	0.000		0.010	0.013	0.000	
Male, age spline 65 to 74	-0.016	0.011	-0.001		-0.011	0.013	-0.000		0.001	0.014	0.000		-0.025	0.020	-0.001	
Male, age spline over 75	-0.008	0.011	-0.001		0.010	0.013	0.000		0.016	0.014	0.000		0.004	0.028	0.000	
Lag of Doctor ever - heart disease																
Lag of Doctor ever - cancer																
Lag of Doctor ever - hypertension																
Lag of Doctor ever - diabetes	$0.202^{* * *}$	0.035	0.020													
Lag of Ever smoked cigarettes	$0.058^{* *}$	0.019	0.005		0.058**	0.026	0.001		0.269***	0.032	0.006		1.419***	0.030	0.066	
Lag of Current smoker	0.049**	0.024	0.004		0.037	0.034	0.001		0.245***	0.033	0.006					
Lag of Any light or heavy physical activity	-0.059***	0.023	-0.005		$-0.082^{* * *}$	0.030	-0.002		-0.101***	0.032	-0.002		-0.157***	0.030	-0.004	
Log(BMI) spline, $\mathrm{BMI}<30$	0.994***	0.074	0.084		1.719***	0.124	0.043		-0.003	0.107	-0.000		-0.233**	0.091	-0.005	
Log(BMI) spline, $\mathrm{BMI}>30$	0.811***	0.087	0.068		1.230***	0.098	0.031		$0.948^{* * *}$	0.118	0.019		-0.200*	0.118	-0.004	
Black, Less than HS	-0.034	0.052	-0.003		-0.092	0.068	-0.002		-0.154**	0.068	-0.003		-0.060	0.067	-0.001	
Black, College	0.079	0.054	0.007		0.047	0.079	0.001		0.223**	0.091	0.006		0.200**	0.080	0.006	
Black, Beyond College	0.137	0.084	0.013		0.005	0.126	0.000		$0.312^{* *}$	0.156	0.009		0.516***	0.136	0.021	
Hispanic, Less than HS	-0.158**	0.072	-0.012		-0.139	0.091	-0.003		-0.265**	0.127	-0.004		-0.150	0.093	-0.003	
Hispanic, College	-0.075	0.107	-0.006		-0.128	0.151	-0.003		0.338*	0.172	0.010		0.317**	0.125	0.010	
Hispanic, Beyond College	-0.103	0.154	-0.008		-0.230	0.238	-0.004		-0.018	0.367	-0.000		0.085	0.256	0.002	
Lag of married from marriage history																
Lag of cohab																
Male, previously married																
Male, previously cohabitating																
Lag of Doctor ever - chronic lung disease																
_cons	$-6.503^{* * *}$	0.337			$-8.678^{* * *}$	0.546			$-2.447^{* * *}$	0.476			$-1.068^{* * *}$	0.368		
note: . 01 - ***; . $05-* * ; .1-* ;$																

| | coef | p-value | coef |
| :--- | ---: | ---: | ---: | p-value

	ADL status (adlstat) coefficients		ADL status (adlstat) marginal effects							IADL status (iadlstat) coefficients				IADL status (iadistat) marginal effects				
	coef	p-value	coef	p-value	coef	p-value	coef	p-value	coef	p-value	coef	p-value	coef	p-value	coef	p-value	coef	p-value
Non-hispanic black	-0.007	0.024	0.001		-0.001		-0.000		-0.000		-0.093***	0.023	0.012		-0.009		-0.003	
Hispanic	-0.036	0.048	0.004		-0.003		-0.001		-0.000		-0.002	0.044	0.000		-0.000		-0.000	
Less than HS/GED	$0.113^{* * *}$	0.028	-0.014		0.009		0.003		0.002		0.085***	0.028	-0.012		0.009		0.003	
College	$-0.177^{* * *}$	0.025	0.019		-0.013		-0.004		-0.002		-0.149***	0.023	0.019		-0.014		-0.004	
Beyond college	-0.199***	0.035	0.021		-0.014		-0.005		-0.002		-0.123***	0.032	0.015		-0.012		-0.003	
Black, Less than HS	-0.010	0.040	0.001		-0.001		-0.000		-0.000		0.019	0.040	-0.002		0.002		0.001	
Black, College	0.023	0.054	-0.003		0.002		0.001		0.000		0.001	0.053	-0.000		0.000		0.000	
Black, Beyond College	0.047	0.084	-0.006		0.004		0.001		0.001		-0.074	0.084	0.009		-0.007		-0.002	
Hispanic, Less than HS	0.034	0.063	-0.004		0.003		0.001		0.000		-0.041	0.059	0.005		-0.004		-0.001	
Hispanic, College	$0.265^{* * *}$	0.095	-0.038		0.024		0.009		0.005		$0.238 * * *$	0.085	-0.037		0.028		0.010	
Hispanic, Beyond College	0.008	0.154	-0.001		0.001		0.000		0.000		-0.015	0.129	0.002		-0.001		-0.000	
Male	0.271	0.334	-0.033		0.022		0.008		0.004		0.027	0.304	-0.004		0.003		0.001	
Black male	0.035	0.033	-0.004		0.003		0.001		0.000		0.110 ***	0.032	-0.016		0.012		0.004	
Hispanic male	-0.139**	0.057	0.015		-0.010		-0.003		-0.002		0.038	0.053	-0.005		0.004		0.001	
Poor as a child	$0.065^{* * *}$	0.016	-0.008		0.005		0.002		0.001		$0.057^{* * *}$	0.016	-0.008		0.006		0.002	
Wealthy as a child	$0.056 * * *$	0.020	-0.007		0.005		0.002		0.001		0.056***	0.019	-0.008		0.006		0.002	
Childhood health - fair	-0.052	0.064	0.006		-0.004		-0.001		-0.001		-0.053	0.062	0.007		-0.005		-0.002	
Childhood health - good	-0.188***	0.057	0.020		-0.014		-0.004		-0.002		-0.191***	0.055	0.023		-0.018		-0.005	
Childhood health - very good	-0.228***	0.056	0.025		-0.017		-0.005		-0.003		$-0.207^{* * *}$	0.054	0.026		-0.020		-0.006	
Childhood health - excellent	-0.267***	0.055	0.033		-0.021		-0.007		-0.004		$-0.282^{* * *}$	0.053	0.039		-0.029		-0.009	
Age spline, less than 35	0.031 ***	0.007	-0.004		0.002		0.001		0.000		$0.021 * * *$	0.006	-0.003		0.002		0.001	
Age spline, 35 to 44	$0.012^{* *}$	0.005	-0.001		0.001		0.000		0.000		$0.013^{* * *}$	0.004	-0.002		0.001		0.000	
Age spline, 45 to 54	$0.012^{* * *}$	0.004	-0.001		0.001		0.000		0.000		$0.016^{* * *}$	0.004	-0.002		0.002		0.000	
Age spline, 55 to 64	0.008*	0.004	-0.001		0.001		0.000		0.000		0.001	0.004	-0.000		0.000		0.000	
Age spline, 65 to 74	$0.019^{* * *}$	0.005	-0.002		0.001		0.001		0.000		0.007	0.005	-0.001		0.001		0.000	
Age spline, more than 75	$0.042^{* * *}$	0.004	-0.005		0.003		0.001		0.001		$0.025^{* * *}$	0.004	-0.003		0.003		0.001	
Male, age spline less than 35	-0.013	0.011	0.002		-0.001		-0.000		-0.000		-0.008	0.010	0.001		-0.001		-0.000	
Male, age spline 35 to 44	0.005	0.007	-0.001		0.000		0.000		0.000		-0.008	0.007	0.001		-0.001		-0.000	
Male, age spline 45 to 54	0.002	0.007	-0.000		0.000		0.000		0.000		0.004	0.007	-0.001		0.000		0.000	
Male, age spline 55 to 64	-0.000	0.007	0.000		-0.000		-0.000		-0.000		0.006	0.007	-0.001		0.001		0.000	
Male, age spline 65 to 74	-0.010	0.008	0.001		-0.001		-0.000		-0.000		-0.003	0.008	0.000		-0.000		-0.000	
Male, age spline over 75	0.007	0.007	-0.001		0.001		0.000		0.000		0.013*	0.007	-0.002		0.001		0.000	
Lag of Doctor ever - heart disease	$0.166^{* * *}$	0.020	-0.022		0.014		0.005		0.003		$0.152^{* * *}$	0.020	-0.022		0.017		0.005	
Lag of Doctor ever - stroke	$0.222^{* * *}$	0.037	-0.031		0.020		0.007		0.004		$0.156^{* * *}$	0.037	-0.023		0.017		0.006	
Lag of Doctor ever - cancer	$0.141^{* * *}$	0.032	-0.019		0.012		0.004		0.002		$0.163^{* * *}$	0.031	-0.024		0.018		0.006	
Lag of Doctor ever - hypertension	$0.180 * * *$	0.017	-0.023		0.015		0.005		0.003		$0.188^{* * *}$	0.017	-0.027		0.020		0.007	
Lag of Doctor ever - diabetes	$0.136 * * *$	0.022	-0.018		0.011		0.004		0.002		$0.119^{* * *}$	0.022	-0.017		0.013		0.004	
Lag of Doctor ever - chronic lung disease	$0.217^{* * *}$	0.024	-0.030		0.019		0.007		0.004		$0.218^{* * *}$	0.024	-0.033		0.025		0.009	
Lag of one ADL	$1.153 * * *$	0.022	-0.270		0.135		0.072		0.063		$0.532^{* * *}$	0.024	-0.099		0.070		0.029	
Lag of two ADLs	1.633***	0.029	-0.461		0.182		0.124		0.154		$0.715^{* * *}$	0.032	-0.150		0.101		0.048	
Lag of three or more ADLs	$2.302^{* * *}$	0.030	-0.701		0.174		0.169		0.358		$0.835^{* * *}$	0.034	-0.185		0.122		0.063	
Lag of Ever smoked cigarettes	$0.098^{* * *}$	0.017	-0.012		0.008		0.003		0.001		$0.071^{* * *}$	0.016	-0.009		0.007		0.002	
Lag of Current smoker	$0.166^{* * *}$	0.020	-0.021		0.014		0.005		0.003		$0.187^{* * *}$	0.019	-0.027		0.020		0.007	
Lag of Any light or heavy physical activity	-0.197***	0.017	0.026		-0.017		-0.006		-0.003		-0.155***	0.017	0.022		-0.017		-0.005	
Log(BMI) spline, BMI < 30	$0.173^{* * *}$	0.062	-0.021		0.014		0.005		0.002		0.015	0.058	-0.002		0.002		0.000	
Log(BMI) spline, $\mathrm{BMI}>30$	$0.847^{* * *}$	0.066	-0.101		0.066		0.023		0.012		0.453***	0.067	-0.060		0.046		0.014	
Lag of one IADL											$0.922^{* * *}$	0.020	-0.206		0.135		0.071	
Lag of two or more IADLs											$1.414^{* * *}$	0.029	-0.390		0.214		0.175	
note: . $01-* * *$, $05-{ }^{* *}$; . $1-* ;$																		

	coef	p-value	coef	p-value
Non-hispanic black	0.009***	0.001	0.009	
Hispanic	0.004**	0.002	0.004	
Less than HS/GED	0.000	0.001	0.000	
College	$-0.007^{* *}$	0.001	-0.007	
Beyond college	-0.007***	0.001	-0.007	
Black, Less than HS	-0.005***	0.002	-0.005	
Black, College	0.006***	0.002	0.006	
Black, Beyond College	0.007**	0.003	0.007	
Hispanic, Less than HS	-0.002	0.003	-0.002	
Hispanic, College	0.005	0.004	0.005	
Hispanic, Beyond College	-0.005	0.005	-0.005	
Male	-0.003*	0.001	-0.003	
Black male	-0.009***	0.001	-0.009	
Hispanic male	-0.005**	0.002	-0.005	
Poor as a child	0.002**	0.001	0.002	
Wealthy as a child	-0.001*	0.001	-0.001	
Childhood health - fair	0.003	0.003	0.003	
Childhood health - good	0.001	0.003	0.001	
Childhood health - very good	-0.000	0.003	-0.000	
Childhood health - excellent	-0.001	0.003	-0.001	
Age spline, less than 35	-0.000	0.000	-0.000	
Age spline, 35 to 44	-0.000**	0.000	-0.000	
Age spline, 45 to 54	-0.000***	0.000	-0.000	
Age spline, 55 to 64	-0.000	0.000	-0.000	
Age spline, 65 to 74	-0.001***	0.000	-0.001	
Age spline, more than 75	-0.002***	0.000	-0.002	
Lag of $\log (\mathrm{BMI})$ spline, $\mathrm{BMI}<30$	0.918***	0.002	0.918	
Lag of log(BMI) spline, $\mathrm{BMI}>30$	0.879***	0.003	0.879	
Lag of married from marriage history	$-0.007^{* * *}$	0.001	-0.007	
Lag of cohab	-0.003*	0.002	-0.003	
Male, previously married	0.007***	0.001	0.007	
Male, previously cohabitating	0.003	0.002	0.003	
_cons	0.296***	0.010		
note: . $01-$ ***; . $05-$ **; . 1 - *;				

	Died (died) coefficients		Died (died) marginal effects		Partner died (part_died) coefficients		Partner died (part_died) marginal effects		R live in nursing home at interview (nhmliv) coefficients		R live in nursing home at interview (nhmliv) marginal effects	
	coef	p -value	coef	p-value	coef	p -value	coef	p -value	coef	p -value	coef	p-value
Non-hispanic black	0.047**	0.020	0.002		0.385	0.275	0.005		-0.238***	0.039	-0.002	
Hispanic	-0.109***	0.031	-0.004		0.090	0.465	0.001		-0.353***	0.055	-0.003	
Less than HS or GED education	0.048***	0.019	0.002		$0.142^{* *}$	0.056	0.002		0.043	0.027	0.001	
College degree or higher	-0.056***	0.019	-0.002		-0.160***	0.053	-0.001		-0.044*	0.027	-0.001	
Male	-0.403	0.602	-0.015		0.132	0.308	0.001		-0.100***	0.027	-0.001	
Black male	0.057^{*}	0.029	0.002		0.108	0.482	0.001		$0.417^{* * *}$	0.061	0.008	
Hispanic male	0.055	0.045	0.002		1.247	0.825	0.059		$0.224^{* *}$	0.089	0.004	
Age spline, less than 35	-0.008	0.015	-0.000									
Age spline, 35 to 44	0.032***	0.012	0.001									
Age spline, 45 to 54	0.016**	0.007	0.001						-0.018	0.037	-0.000	
Age spline, 55 to 64	$0.024 * * *$	0.004	0.001						$0.045^{* * *}$	0.009	0.001	
Age spline, 65 to 74	$0.032^{* * *}$	0.003	0.001		0.061 ***	0.009	0.001		$0.040^{* * *}$	0.005	0.000	
Age spline, 75 to 84	$0.048^{* * *}$	0.003	0.002									
Age spline, more than 85	$0.064 * * *$	0.003	0.002									
Male, age spline less than 35	0.022	0.021	0.001									
Male, age spline 35 to 44	-0.026	0.016	-0.001									
Male, age spline 45 to 54	0.015	0.011	0.001									
Male, age spline 55 to 64	0.001	0.006	0.000									
Male, age spline 65 to 74	0.001	0.005	0.000									
Male, age spline 75 to 84	-0.007	0.004	-0.000									
Male, age spline over 85	$0.013^{* *}$	0.005	0.000									
Lag of Doctor ever - heart disease	0.188***	0.012	0.008						-0.044*	0.024	-0.001	
Lag of Doctor ever - stroke	$0.221 * * *$	0.016	0.010						$0.351 * * *$	0.027	0.006	
Lag of Doctor ever - cancer	0.408***	0.014	0.022						-0.055*	0.028	-0.001	
Lag of Doctor ever - hypertension	$0.127^{* * *}$	0.012	0.005						-0.056**	0.023	-0.001	
Lag of Doctor ever - diabetes	$0.227^{* * *}$	0.013	0.010						$0.148 * * *$	0.026	0.002	
Lag of Doctor ever - chronic lung disease	0.349***	0.015	0.018						-0.071**	0.035	-0.001	
Lag of one ADL	$0.265^{* * *}$	0.017	0.013						$0.384^{* * *}$	0.031	0.007	
Lag of two ADLs	$0.405^{* * *}$	0.022	0.023						$0.707^{* * *}$	0.037	0.021	
Lag of three or more ADLs	0.809***	0.017	0.067						1.225***	0.028	0.067	
Lag of Current smoker	0.306***	0.016	0.015						0.127***	0.037	0.002	
Male, less than high school	0.009	0.027	0.000		-0.029	0.095	-0.000					
Male, college or more	-0.049*	0.027	-0.002		0.137	0.088	0.001					
Age spline, less than 65					$0.032^{* * *}$	0.003	0.000					
Age spline, more than 75					0.017*	0.010	0.000		$0.061^{* * *}$	0.002	0.001	
Male, less than 65					-0.010	0.006	-0.000					
Male, age 65 to 74					-0.019	0.015	-0.000					
Male, age more than 75					0.025*	0.013	0.000					
Black, age spline less than 65					0.000	0.005	0.000					
Black, age spline 65 to 74					-0.044**	0.020	-0.000					
Black, age spline over 75					$0.064^{* *}$	0.029	0.001					
Hispanic, age spline less than 65					-0.001	0.009	-0.000					
Hispanic, age spline 65 to 74					-0.014	0.034	-0.000					
Hispanic, age spline over 75					0.035	0.050	0.000					
Black male, less than 65					-0.007	0.010	-0.000					
Black male, 65 to 74					0.028	0.034	0.000					
Black male, over 75					-0.024	0.042	-0.000					
Hispanic male, less than 65					-0.035*	0.019	-0.000					
Hispanic male, 65 to 74					0.111	0.073	0.001					
Hispanic male, over 75					-0.049	0.073	-0.000					
Lag of Widowed: most recent spouse died									0.241 ***	0.024	0.004	
_cons	$-2.971^{* * *}$	0.432			-4.117***	0.183			-3.201***	0.342		

The Future Elderly Model: Technical Documentation

Dana P. Goldman, University of Southern California
Duncan Ermini Leaf, University of Southern California Jeffrey Sullivan, Precision Health Economics, LLC
Bryan Tysinger, University of Southern California

July 21, 2021

Contents

1 Functioning of the dynamic model 5
1.1 Background 5
1.2 Overview 5
1.3 Comparison with other prominent microsimulation models of health expenditures 6
1.3.1 CBOLT Model 7
1.3.2 Centers for Medicare and Medicaid Services 7
2 Data sources used for estimation 7
2.1 Health and Retirement Study 8
2.2 Social Security covered earnings files 8
2.3 National Health Interview Survey 9
2.4 Medical Expenditure Panel Survey 9
2.5 Medicare Current Beneficiary Survey 9
3 Data sources for trends and baseline scenario 10
3.1 Data for trends in entering cohorts 10
3.2 Data for other projections 10
3.3 Demographic adjustments 10
4 Estimation 11
4.1 Transition model 11
4.1.1 Inverse Hyperbolic Sine Transformation 12
4.2 Quality adjusted life years 13
5 Model for new cohorts 14
5.1 Information available and empirical strategy 14
5.2 Model and estimation 14
6 Government revenues and expenditures 15
6.1 Social Security benefits 15
6.2 Disability Insurance benefits 16
6.3 Supplemental Security Income benefits 16
6.4 Medical costs estimation 16
6.5 Taxes 17
7 Scenarios and robustness 18
7.1 Obesity reduction scenario 18
8 Implementation 18
8.1 Intervention Module 19
9 Model development 20
9.1 Transition model 20
9.2 Quality adjusted life years 21
9.2.1 Health related quality-of-life measures 21
9.2.2 Health related quality-of-life in MEPS 21
9.2.3 MEPS-HRS Crosswalk development 21
9.3 Drug Expenditures 23
9.3.1 Drug Expenditures - MEPS 23
9.3.2 Drug Expenditures - MCBS 23
9.3.3 Drug Expenditures - Estimation 23
10 Validation 24
10.1 Data Splitting 24
10.1.1 Demographics 24
10.1.2 Health Outcomes 24
10.1.3 Health Risk Factors 24
10.2 External Validation 25
10.2.1 Benefits from Social Security Administration 25
10.2.2 Benefits from Medicare and Medicaid 25
10.3 External Corroboration 25
11 Baseline Forecasts 26
11.1 Disease Prevalence 26
12 Acknowledgments 29
13 Tables 29
References 50

List of Figures

1 Architecture of the FEM 6
2 Distribution of EQ-5D index scores for ages 51+ in 2001 MEPS 22
3 Historic and Forecasted Chronic Disease Prevalence for Men 55+ 27
4 Historic and Forecasted Chronic Disease Prevalence for Women 55+ 27
5 Historic and Forecasted ADL and IADL Prevalence for Men 55+ 28
6 Historic and Forecasted ADL and IADL Prevalence for Women 55+ 28

List of Tables

1 Health condition prevalences in survey data 30
2 Survey questions used to determine health conditions 31
3 Data sources and methods for projecting future cohort trends 32
$4 \quad$ Projected baseline trends for future cohorts. 33
5 Prevalence of obesity, hypertension, diabetes and current smokers among ages 46-56 in 1978 and 2004 34
6 Outcomes in the transition model 35
7 Restrictions on transition model 36
8 Desciptive statistics for exogeneous control variables 37
$9 \quad$ Data-splitting validation of 1998 cohort: Simulated vs reported mortality and nursing home outcomes in 2000, 2006, and 2012 38
10 Data-splitting validation of 1998 cohort: Simulated vs reported demographic out-comes in 2000, 2006, and 201238
11 Data-splitting validation of 1998 cohort: Simulated vs reported binary health out- comes in 2000, 2006, and 2012 38
12 Data-splitting validation of 1998 cohort: Simulated vs reported risk factor outcomes in 2000, 2006, and 2012 39
13 Prevalence of IADL and ADL limitations among ages 51+ in MEPS 2001 and HRS 39
14 Prevalence of IADL limitation and physical function limitation among ages $51+$ in MEPS 2001 and HRS 1998 39
15 OLS regressions of EQ-5D utility index among ages 51+ in MEPS 2001 40
16 OLS regression of the predicted EQ-5D index score against chronic conditions and FEM-type functional status specification 41
17 Average predicted EQ-5D score, age, and prevalence of chronic conditions by func- 42
18 Initial conditions used for estimation (1992) and simulation (2004) 43
19 Parameter estimates for latent model: conditional means and thresholds 44
20 Parameter estimates for latent model: parameterized covariance matrix 45
21 Per capita medical spending by payment source, age group, and year 46
22 Simulation results for status quo scenario 46
23 Simulation results for obesity reduction scenario compared to status quo 47
24 Assumptions for each calendar year 48
25 Assumptions for each birth year 49

This appendix describes technical details to support the paper "Measuring the COVID-19 Mortality Burden in the United States: A Microsimulation Study". In addition to outcomes described in the paper, the microsimulation provides additional outcomes (e.g. medical expenditures and social security benefits). As the data sources and models are intricately connected, we report all data sources and methodology to provide a complete picture of the microsimulation to the reader. However, the sections that are most relevant to this paper are: section 1 for an overview; data source sections 2.1 (HRS), 2.3 (NHIS), 2.4 (MEPS), and 3 (trends and baseline scenario); sections 4 and 5 for estimation of the transition model and the model for new cohorts, respectively; section 8 for the implementation; sections 9.1 and 9.2 for a historical background of the development of transition models and QALY measures; sections 10.1 and 10.3 for validation strategies; and section 11 for baseline forecasts.

1 Functioning of the dynamic model

1.1 Background

The Future Elderly Model (FEM) is a microsimulation model originally developed out of an effort to examine health and health care costs among the elderly Medicare population (age $65+$). A description of the previous incarnation of the model can be found in Goldman et al. (2004). The original work was founded by the Centers for Medicare and Medicaid Services and carried out by a team of researchers composed of Dana P. Goldman, Paul G. Shekelle, Jayanta Bhattacharya, Michael Hurd, Geoffrey F. Joyce, Darius N. Lakdawalla, Dawn H. Matsui, Sydne J. Newberry, Constantijn W. A. Panis and Baoping Shang.

Since then various extensions have been implemented to the original model. The most recent version now projects health outcomes for all Americans aged 51 and older and uses the Health and Retirement Study (HRS) as a host dataset rather than the Medicare Current Beneficiary Survey (MCBS). The work has also been extended to include economic outcomes such as earnings, labor force participation and pensions. This work was funded by the National Institute on Aging through its support of the RAND Roybal Center for Health Policy Simulation (P30AG024968), the Department of Labor through contract J-9-P-2-0033, the National Institutes of Aging through the R01 grant "Integrated Retirement Modeling" (R01AG030824) and the MacArthur Foundation Research Network on an Aging Society. Finally, the computer code of the model was transferred from Stata to C++. This report incorporates these new development efforts in the description of the model.

1.2 Overview

The defining characteristic of the model is the modeling of real rather than synthetic cohorts, all of whom are followed at the individual level. This allows for more heterogeneity in behavior than would be allowed by a cell-based approach. Also, since the HRS interviews both respondent and spouse, we can link records to calculate household-level outcomes such as net income and Social Security retirement benefits, which depend on the outcomes of both spouses. The omission of the population younger than age 51 sacrifices little generality, since the bulk of expenditure on the public programs we consider occurs after age 50. However, we may fail to capture behavioral responses among the young.

The model has three core components:

- The initial cohort module predicts the economic and health outcomes of new cohorts of $51 / 52$ year-olds. This module takes in data from the Health and Retirement Study (HRS) and trends calculated from other sources. It allows us to "generate" cohorts as the simulation proceeds, so that we can measure outcomes for the age $51+$ population in any given year.
- The transition module calculates the probabilities of transiting across various health states and financial outcomes. The module takes as inputs risk factors such as smoking, weight, age and education, along with lagged health and financial states. This allows for a great deal of heterogeneity and fairly general feedback effects. The transition probabilities are estimated from the longitudinal data in the Health and Retirement Study (HRS).
- The policy outcomes module aggregates projections of individual-level outcomes into policy outcomes such as taxes, medical care costs, pension benefits paid, and disability benefits. This component takes account of public and private program rules to the extent allowed by the available outcomes. Because we have access to HRS-linked restricted data from Social Security records and employer pension plans, we are able to realistically model retirement benefit receipt.

Figure 1: Architecture of the FEM
Figure 1 provides a schematic overview of the model. We start in 2004 with an initial population aged $51+$ taken from the HRS. We then predict outcomes using our estimated transition probabilities (see section 4.1). Those who survive make it to the end of that year, at which point we calculate policy outcomes for the year. We then move to the following time period (two years later), when a new cohort of 51 and 52 year-olds enters (see section 5.1). This entrance forms the new age 51+ population, which then proceeds through the transition model as before. This process is repeated until we reach the final year of the simulation.

1.3 Comparison with other prominent microsimulation models of health expenditures

The FEM is unique among existing models that make health expenditure projections. It is the only model that projects health trends rather than health expenditures. It is also the only model that generates mortality out of assumptions on health trends rather than historical time series.

1.3.1 CBOLT Model

The Congressional Budget Office (CBO) uses time-series techniques to project health expenditure growth in the short term and then makes an assumption on long-term growth. They use a long term growth of excess costs of 2.3 percentage points starting in 2020 for Medicare. They then assume a reduction in excess cost growth in Medicare of 1.5% through 2083, leaving a rate of 0.9% in 2083. For non-Medicare spending they assume an annual decline of 4.5%, leading to an excess growth rate in 2083 of 0.1%.

1.3.2 Centers for Medicare and Medicaid Services

The Centers for Medicare and Medicaid Services (CMS) performs an extrapolation of medical expenditures over the first ten years, then computes a general equilibrium model for years 25 through 75 and linearly interpolates to identify medical expenditures in years 11 through 24 of their estimation. The core assumption they use is that excess growth of health expenditures will be one percentage point higher per year for years 25-75 (that is if nominal GDP growth is 4%, health care expenditure growth will be 5%).

2 Data sources used for estimation

The Health and Retirement Study is the main data source for the model. We supplemented this data with merged Social Security covered earnings histories and data on health trends and health care costs coming from 3 major health surveys in the U.S. We describe these surveys below and the samples we selected for the analysis. We first list the variables used in the analysis. We then give details on the data sources.

Estimated Outcomes in Initial Conditions Model

Economic Outcomes
Employment
Earnings
Wealth
Defined Contribution Pension Wealth
Pension Plan Type
AIME
Social Security Quarters of Coverage
Health Insurance
Health Outcomes
Hypertension
Heart Disease
Self-Reported Health
BMI Status
Smoking Status
Functional Status

Estimated Outcomes in/from Transition Model

Economic Outcomes	Health Outcomes Employment	Other Outcomes Income Tax Revenue
Earnings	Heart	Social Security Revenue
Wealth	Stroke	Medicare Revenue
Demographics	Cancer	Medical Expenses
Health Insurance	Hypertension	Medicare Part A Expenses
Disability Insurance Claim	Diabetes	Medicare Part B Expenses
Defined Benefit Claim	Lung Disease	Medicare Part B Enrollment
SSI Claim	Nursing Home	Medicare Part D Enrollment
Social Security Claim	BMI	OASI Enrollment
	Smoking Status	DI enrollment
	ADL Limitations	SSI enrollment
	IADL Limitations	Medicaid Enrollment
		Medicaid Expenditures

2.1 Health and Retirement Study

The Health and Retirement Study (HRS) waves 2000-2008 are used to estimate the transition model. Interviews occur every two years. We use the dataset created by RAND (RAND HRS, version K) as our basis for the analysis. We use all cohorts in the analysis and consider sampling weights whenever appropriate. When appropriately weighted, the HRS in 2004 is representative of U.S. households where at least one member is at least 51 . The HRS is also used as the host data for the simulation (pop 51+ in 2004) and for new cohorts (aged 51 and 52 in 2004).

The HRS adds new cohorts every six years. Until recently, the latest available cohort had been added in 2004, which is why that is the FEM's base year. The FEM is currently being updated to use the newly released 2010 data.

2.2 Social Security covered earnings files

To get information on Social Security entitlements of respondents, we match the HRS data to the Social Security Covered Earnings files of 1992, 1993, 1998, 2004 and 2006 which provides information on earning histories of respondents as well as their entitlement to future Social Security benefits. We then construct the average indexed monthly earnings (AIME), the basis for the determination of benefit levels, from these earning histories. The AIME is constructed by first indexing using the National Wage Index (NWI) to the wage level when the respondent turns age 60. If this occurs after 2008, we project the evolution of the NWI using the average annual rate of change of the last 20 years (2.9% nominal). We then take the 35 highest years (if less than 35 years are available, remaining years are considered zero earning years) and take the average. We then convert back this annual amount on a monthly basis and convert back to $\$ 2004$ U.S. dollars using the CPI. Quarters of coverage, which determine eligibility to Social Security, are defined as the sum of posted quarters to the file. A worker is eligible for Social Security if he has accumulated at least 40 quarters of coverage. A worker roughly accumulates a quarter of coverage for every $\$ 4000$ of coverage earnings up to a maximum of 4 per year. Not all respondents agree to have their record matched. Hence, there is the potential for non-representativeness. However, recent studies show that the extent of non-representativeness is quite small and that appropriate weighting using HRS weights mostly corrects for this problem (Kapteyn et al., 2006).

2.3 National Health Interview Survey

The National Health Interview Survey (NHIS) contains individual-level data on height, weight, smoking status, self-reported chronic conditions, income, education, and demographic variables. It is a repeated cross-section done every year for several decades. But the survey design has been significantly modified several times. Before year 1997, different subgroups of individuals were asked about different sets of chronic conditions, after year 1997, a selected sub-sample of the adults were asked a complete set of chronic conditions. The survey questions are quite similar to that in HRS. As a result, for projecting the trends of chronic conditions for future $51 / 52$ year-olds, we only use data from 1997 to 2010. A review of survey questions is provided in Table 2. Information on weight and height were asked every year, while information on smoking was asked in selected years before year 1997, and has been asked annually since year 1997.

FEM uses NHIS to project prevalence of chronic conditions in future cohorts of 51-52 year olds. The method is discussed in Sections 3.1 and 5.1. FEM also relies on the Medical Expenditure Panel Survey, a subsample of NHIS respondents, for model estimation. See section 2.4 for a description.

2.4 Medical Expenditure Panel Survey

The Medical Expenditure Panel Survey (MEPS), beginning in 1996, is a set of large-scale surveys of families and individuals, their medical providers (doctors, hospitals, pharmacies, etc.), and employers across the United States. The Household Component (HC) of the MEPS provides data from individual households and their members, which is supplemented by data from their medical providers. The Household Component collects data from a representative sub sample of households drawn from the previous year's National Health Interview Survey (NHIS). Since NHIS does not include the institutionalized population, neither does MEPS: this implies that we can only use the MEPS to estimate medical costs for the non-elderly population. Information collected during household interviews include: demographic characteristics, health conditions, health status, use of medical services, sources of medical payments, and body weight and height. Each year the household survey includes approximately 12,000 households or 34,000 individuals. Sample size for those aged 51-64 is about 4,500. MEPS has comparable measures of social-economic (SES) variables as those in HRS, including age, race/ethnicity, educational level, census region, and marital status.

FEM uses MEPS years 2000-2010 for cost estimation. See Section 6.4 for a description. FEM also uses MEPS 2001 data for QALY model estimation. This is described in Section 4.2.

2.5 Medicare Current Beneficiary Survey

The Medicare Current Beneficiary Survey (MCBS) is a nationally representative sample of aged, disabled and institutionalized Medicare beneficiaries. The MCBS attempts to interview each respondent twelve times over three years, regardless of whether he or she resides in the community, a facility, or transitions between community and facility settings. The disabled (under 65 years of age) and oldest-old (85 years of age or older) are over-sampled. The first round of interviewing was conducted in 1991. Originally, the survey was a longitudinal sample with periodic supplements and indefinite periods of participation. In 1994, the MCBS switched to a rotating panel design with limited periods of participation. Each fall a new panel is introduced, with a target sample size of 12,000 respondents and each summer a panel is retired. Institutionalized respondents are interviewed by proxy. The MCBS contains comprehensive self-reported information on the health status, health care use and expenditures, health insurance coverage, and socioeconomic and demographic characteristics of the entire spectrum of Medicare beneficiaries. Medicare claims data for
beneficiaries enrolled in fee-for-service plans are also used to provide more accurate information on health care use and expenditures. MCBS years 1992-2010 are used for estimating medical cost and enrollment models. See section 6.4 for discussion.

3 Data sources for trends and baseline scenario

Two types of trends need to be projected in the model. First, we need to project trends in the incoming cohorts (the future new age $51 / 52$ individuals). This includes trends in health and economic outcomes. Second, we need to project excess aggregate growth in real income and excess growth in health spending.

3.1 Data for trends in entering cohorts

We used a multitude of data sources to compute U.S. trends. First, we used NHIS for chronic conditions and applied the methodology discussed in (Goldman et al., 2004). The method consists of projecting the experience of younger cohorts into the future until they reach age 51. The projection method is tailored to the synthetic cohorts observed in NHIS. For example, we observe a representative sample of age 35 individuals born in 1945 in 1980. We follow their disease patterns in 1980 to 1981 surveys by then selecting those aged 36 in 1981, accounting for mortality, etc.

We then collected information on other trends, i.e. for obesity and smoking, from other studies (Honeycutt et al., 2003; Levy, 2006; Poterba et al., 2009; Ruhm, 2007; Mainous III et al., 2007). Table 3 presents the sources and Table 4 presents the trends we use in the baseline scenario. Table 5 presents the prevalence of obesity, hypertension, diabetes, and current smokers in 1978 and 2004, and the annual rates of change from 1978 to 2004. We refer the readers to the analysis in Goldman et al. (2004) for information on how the trends were constructed.

3.2 Data for other projections

We make two assumptions relating to real growth in wages and medical costs. Firstly, as is done in the 2009 Social Security Trustees report intermediate cost scenario, we assume a long term real increase in wages (earnings) of 1.1% per year. Next, following the Centers for Medicare and Medicaid Services, we assume excess real growth in medical costs (that is additional cost growth to GDP growth), as 1.5% in 2004, reducing linearly to 1% in 2033 , 4% in 2053 , and $-.2 \%$ in 2083. We also include the Affordable Care Act cost growth targets as an optional cap on medical cost growth. Baseline medical spending figures presented assume those targets are met. GDP growth in the near term (through 2019) is based on CBO projections, with the OASDI Trustees assumption of 2% yearly afterwards.

3.3 Demographic adjustments

We make two adjustments to the weighting in the HRS to match population counts. Since we deleted some cases from the data and only considered the set of respondents with matched Social Security records, this takes account of selectivity based on these characteristics. First, we poststratify the HRS sample by 5 year age groups, gender and race and rebalance weights using the Census Bureau 2000-2010 Intercensal Population Estimates. We do this for both the host data set and the new cohorts. We scale the weights for future new cohorts using 2012 National Population Projections based on race and gender. Second, we post- stratify the HRS sample of deaths between
the 2002 and 2004 interview waves by 5 year age groups, gender and race and rebalance weights based on the Human Mortality Database.

Once the simulation begins, trends in migration and mortality are applied. We use net migration from the SSA Trustees report intermediate cost scenario. Separate mortality rate adjustment factors are defined for the under and over 65 age groups based on the mortality projections from the 2013 SSA Trustees report. The SSA projections are interpolated through 2090, then extended using GLM with \log link through 2150. The average yearly all-cause mortality reduction between 2020 and 2150 was 1.06% for ages $25-64$, and 0.66% for the $65+$ population.

4 Estimation

In this section we describe the approach used to estimate the transition model, the core of the FEM, and the initial cohort model which is used to rejuvenate the simulation population.

4.1 Transition model

We consider a large set of outcomes for which we model transitions. Table 6 gives the set of outcomes considered for the transition model along with descriptive statistics and the population at risk when estimating the relationships.

Since we have a stock sample from the age $51+$ population, each respondent goes through an individual-specific series of intervals. Hence, we have an unbalanced panel over the age range starting from 51 years old. Denote by $j_{i 0}$ the first age at which respondent i is observed and $j_{i T_{i}}$ the last age when he is observed. Hence we observe outcomes at ages $j_{i}=j_{i 0}, \ldots, j_{i T_{i}}$.

We first start with discrete outcomes which are absorbing states (e.g. disease diagnostic, mortality, benefit claiming). Record as $h_{i, j_{i}, m}=1$ if the individual outcome m has occurred as of age j_{i}. We assume the individual-specific component of the hazard can be decomposed in a time invariant and variant part. The time invariant part is composed of the effect of observed characteristics x_{i} that are constant over the entire life course and initial conditions $h_{i, j_{0},-m}$ (outcomes other than the outcome m) that are determined before the first age in which each individual is observed ${ }^{1}$, The time-varying part is the effect of previously diagnosed outcomes $h_{i, j_{i}-1,-m}$, on the hazard for $m \square^{2}$ We assume an index of the form $z_{m, j_{i}}=x_{i} \beta_{m}+h_{i, j_{i}-1,-m} \gamma_{m}+h_{i, j_{0},-m} \psi_{m}$. Hence, the latent component of the hazard is modeled as

$$
\begin{gather*}
h_{i, j_{i}, m}^{*}=x_{i} \beta_{m}+h_{i, j_{i}-1,-m} \gamma_{m}+h_{i, j_{0},-m} \psi_{m}+a_{m, j_{i}}+\varepsilon_{i, j_{i}, m}, \tag{1}\\
m=1, \ldots, M_{0}, j_{i}=j_{i 0}, \ldots, j_{i, T_{i}}, i=1, \ldots, N
\end{gather*}
$$

The term $\varepsilon_{i, j_{i}, m}$ is a time-varying shock specific to age j_{i}. We assume that this last shock is normally distributed and uncorrelated across diseases. We approximate $a_{m, j_{i}}$ with an age spline. After several specification checks, knots at age 65 and 75 appear to provide the best fit. This simplification is made for computational reasons since the joint estimation with unrestricted age fixed effects for each condition would imply a large number of parameters. The absorbing outcome, conditional on being at risk, is defined as

$$
h_{i, j_{i}, m}=\max \left\{I\left(h_{i, j_{i}, m}^{*}>0\right), h_{i, j_{i}-1, m}\right\}
$$

[^2]The occurrence of mortality censors observation of other outcomes in a current year. Mortality is recorded from exit interviews.

A number of restrictions are placed on the way feedback is allowed in the model. Table 7 documents restrictions placed on the transition model. We also include a set of other controls. A list of such controls is given in Table 8 along with descriptive statistics.

We have three other types of outcomes:

1. First, we have binary outcomes which are not an absorbing state, such as living in a nursing home. We specify latent indices as in (1) for these outcomes as well but where the lag dependent outcome also appears as a right-hand side variable. This allows for state-dependence.
2. Second, we have ordered outcomes. These outcomes are also modeled as in (1) recognizing the observation rule is a function of unknown thresholds ς_{m}. Similarly to binary outcomes, we allow for state-dependence by including the lagged outcome on the right-hand side.
3. The third type of outcomes we consider are censored outcomes, earnings and financial wealth. Earnings are only observed when individuals work. For wealth, there are a non-negligible number of observations with zero and negative wealth. For these, we consider two part models where the latent variable is specified as in (1) but model probabilities only when censoring does not occur. In total, we have M outcomes.
The parameters $\theta_{1}=\left(\left\{\beta_{m}, \gamma_{m}, \psi_{m}, \varsigma_{m}\right\}_{m=1}^{M},\right)$, can be estimated by maximum likelihood. Given the normality distribution assumption on the time-varying unobservable, the joint probability of all time-intervals until failure, right-censoring or death conditional on the initial conditions $h_{i, j_{0},-m}$ is the product of normal univariate probabilities. Since these sequences, conditional on initial conditions, are also independent across diseases, the joint probability over all disease-specific sequences is simply the product of those probabilities.

For a given respondent observed from initial age $j_{i 0}$ to a last age $j_{T_{i}}$, the probability of the observed health history is (omitting the conditioning on covariates for notational simplicity)

$$
l_{i}^{-0}\left(\theta ; h_{i, j_{i 0}}\right)=\left[\prod_{m=1}^{M-1} \prod_{j=j_{i 1}}^{j_{T_{i}}} P_{i j, m}(\theta)^{\left(1-h_{i j-1, m)}\right)\left(1-h_{i j, M}\right)}\right] \times\left[\prod_{j=j_{i 1}}^{j_{T_{i}}} P_{i j, M}(\theta)\right]
$$

We use the -0 superscript to make explicit the conditioning on $\mathbf{h}_{i, j_{i 0}}=\left(h_{i, j_{i_{0}}, 0}, \ldots, h_{i, j_{0}, M}\right)^{\prime}$. We have limited information on outcomes prior to this age. The likelihood is a product of M terms with the m th term containing only ($\beta_{m}, \gamma_{m}, \psi_{m}, \varsigma_{m}$). This allows the estimation to be done seperately for each outcome.

4.1.1 Inverse Hyperbolic Sine Transformation

One problem fitting the wealth and earnings distribution is that they have a long right tail and wealth has some negative values. We use a generalization of the inverse hyperbolic sine transform (IHT) presented in MacKinnon and Magee (1990). First denote the variable of interest y. The hyperbolic sine transform is

$$
\begin{equation*}
y=\sinh (x)=\frac{\exp (x)-\exp (-x)}{2} \tag{2}
\end{equation*}
$$

The inverse of the hyperbolic sine transform is

$$
x=\sinh ^{-1}(y)=h(y)=\log \left(y+\left(1+y^{2}\right)^{1 / 2}\right)
$$

Consider the inverse transformation. We can generalize such transformation, first allowing for a shape parameter θ,

$$
\begin{equation*}
r(y)=h(\theta y) / \theta \tag{3}
\end{equation*}
$$

Such that we can specify the regression model as

$$
\begin{equation*}
r(y)=x \beta+\varepsilon, \varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right) \tag{4}
\end{equation*}
$$

A further generalization is to introduce a location parameter ω such that the new transformation becomes

$$
\begin{equation*}
g(y)=\frac{h(\theta(y+\omega))-h(\theta \omega)}{\theta h^{\prime}(\theta \omega)} \tag{5}
\end{equation*}
$$

where $h^{\prime}(a)=\left(1+a^{2}\right)^{-1 / 2}$.
We specify (4) in terms of the transformation g. The shape parameters can be estimated from the concentrated likelihood for θ, ω. We can then retrieve β, σ by standard OLS.

Upon estimation, we can simulate

$$
\tilde{g}=x \hat{\beta}+\sigma \tilde{\eta}
$$

where η is a standard normal draw. Given this draw, we can retransform using (5) and (2)

$$
\begin{aligned}
& h(\theta(y+\omega))=\theta h^{\prime}(\theta \omega) \tilde{g}+h(\theta \omega) \\
& \tilde{y}=\frac{\sinh \left[\theta h^{\prime}(\theta \omega) \tilde{g}+h(\theta \omega)\right]-\theta \omega}{\theta}
\end{aligned}
$$

4.2 Quality adjusted life years

As an alternative measure of life expectancy, we compute a quality adjusted life year (QALY) based on the EQ-5D instrument, a widely-used health-related quality-of-life (HRQoL) measur ${ }^{3}$. The scoring system for EQ-5D was first developed by Dolan (1997) using a UK sample. Later, a scoring system based on a US sample was generated (Shaw et al., 2005). The HRS does not ask the appropriate questions for computing EQ-5D, but the MEPS does. We use a crosswalk from MEPS to compute EQ-5D scores for HRS respondents not living in a nursing homd

The FEM has a more limited specification of functional status than what is available in the HRS. In order to predict HRQoL for the FEM simulation sample, we needed to build a bridge between the FEM-type functional status and the predicted EQ-5D score in HRS. We used ordinary least squares to model the EQ-5D score predicted for non-nursing home in the 1998 HRS as a function of the six chronic conditions and the FEM-specification of functional status, The results are shown in Table 16

The EQ-5D scoring method is based on a community population. Following a suggestion by Emmett Keeler, if a person is living in a nursing home, the QALY is reduced by 10%. We used the parameter estimates in Table 16 to predict EQ-5D scores for the entire FEM simulation sample and reduced nursing home residents' score by 10%. The resulting scores are representative of the U.S population (both in community and in nursing homes) ages 51 and over. Table 17 summarizes the EQ-5D score using this model for the stock FEM simulation sample in 2004.

[^3]
5 Model for new cohorts

We first discuss the empirical strategy, then present the model and estimation results. The model for new cohorts integrates information coming from trends among younger cohorts with the joint distribution of outcomes in the current population of age 51 respondents in the HRS.

5.1 Information available and empirical strategy

For the transition model, we need to first to obtain outcomes listed in Table 18. Ideally, we need information on

$$
f_{t}\left(y_{i 1}, \ldots, y_{i M}\right)=f_{t}\left(\mathbf{y}_{i}\right)
$$

where t denotes calendar time, and $\mathbf{y}_{i}=\left(y_{i 1}, \ldots, y_{i M}\right)$ is a vector of outcomes of interest whose probability distribution at time t is $f_{t}()$. Information on how the joint distribution evolves over time is not available. Trends in conditional distributions are rarely reported either.

Generally, we have (from published or unpublished sources) good information on trends for some moments of each outcome (say a mean or a fraction). That is, we have information on $g_{t, m}\left(y_{i m}\right)$, where $g_{t, m}()$ denotes the marginal probability distribution of outcome m at time t.

For example, we know from the NHIS repeated cross-sections that the fraction obese is increasing by roughly 2% a year among 51 year olds. In statistical jargon this means we have information on how the mean of the marginal distribution of $y_{i m}$, an indicator variable that denotes whether someone is obese, is evolving over time.

We also have information on the joint distribution at one point in time, say year t_{0}. For example, we can estimate the joint distribution on age 51 respondents in the 1992 wave of the HRS, $f_{t_{0}}\left(\mathbf{y}_{i}\right)$.

We make the assumption that only some part of $f_{t}\left(\mathbf{y}_{i}\right)$ evolves over time. In particular, we will model the marginal distribution of each outcome allowing for correlation across these marginals. The correlations will be assumed fixed while the mean of the marginals will be allowed to change over time.

5.2 Model and estimation

Assume the latent model for $\mathbf{y}_{i}^{*}=\left(y_{i 1}^{*}, \ldots, y_{i M}^{*}\right)^{\prime}$,

$$
\mathbf{y}_{i}^{*}=\mu+\varepsilon_{i},
$$

where ε_{i} is normally distributed with mean zero and covariance matrix $\boldsymbol{\Omega}$. It will be useful to write the model as

$$
\mathbf{y}_{i}^{*}=\mu+\mathbf{L}_{\Omega} \eta_{i},
$$

where \mathbf{L}_{Ω} is a lower triangular matrix such that $\mathbf{L}_{\Omega} \mathbf{L}_{\Omega}^{\prime}=\mathbf{\Omega}$ and $\eta_{i}=\left(\eta_{i 1}, \ldots, \eta_{i M}\right)^{\prime}$ are standard normal. We observe $y_{i}=\Gamma\left(y_{i}^{*}\right)$ which is a non-invertible mapping for a subset of the M outcomes. For example, we have binary, ordered and censored outcomes for which integration is necessary.

The vector μ can depend on some variables which have a stable distribution over time \mathbf{z}_{i} (say race, gender and education). This way, estimation preserves the correlation with these outcomes without having to estimate their correlation with other outcomes. Hence, we can write

$$
\mu_{i}=\mathbf{z}_{i} \beta
$$

and the whole analysis is done conditional on \mathbf{z}_{i}.

For binary and ordered outcomes, we fix $\Omega_{m, m}=1$ which fixes the scale. Also we fix the location of the ordered models by fixing thresholds as $\tau_{0}=-\infty, \tau_{1}=0, \tau_{K}=+\infty$, where K denotes the number of categories for a particular outcome. We also fix to zero the correlation between selected outcomes (say earnings) and their selection indicator. Hence, we consider two-part models for these outcomes. Because some parameters are naturally bounded, we also re-parameterize the problem to guarantee an interior solution. In particular, we parameterize

$$
\begin{aligned}
& \Omega_{m, m}=\exp \left(\delta_{m}\right), m=m_{0}-1, \ldots, M \\
& \Omega_{m, n}=\tanh \left(\xi_{m, n}\right) \sqrt{\Omega_{m, m} \Omega_{m, n}}, m, n=1, \ldots, N \\
& \tau_{m, k}=\exp \left(\gamma_{m, k}\right)+\tau_{k-1}, k=2, \ldots, K_{m}-1, m \text { ordered }
\end{aligned}
$$

and estimate the $\left(\delta_{m, m}, \xi_{m, n}, \gamma_{k}\right)$ instead of the original parameters. The parameter values are estimated using the cmp package in Stata (Roodman, 2011). Table 19 gives parameter estimates for the indices while Table 20 gives parameter estimates of the covariance matrix in the outcomes.

To apply trends to the future cohorts, the latent model is written as

$$
\mathbf{y}_{i}^{*}=\mu+\mathbf{L}_{\Omega} \eta_{i} .
$$

Each marginal has a mean change equal to $\mathrm{E}(\mathbf{y} \mid \mu)=(1+\tau) g(\mu)$, where τ is the percent change in the outcome and $g()$ is a non-linear but monotone mapping. Since it is invertible, we can find the vector μ^{*} where $\mu^{*}=g^{-1}(\mathrm{E}(y \mid \mu) /(1+\tau))$. We use these new intercepts to simulate new outcomes.

6 Government revenues and expenditures

This gives a limited overview of how revenues and expenditures of the government are computed. These functions are based on 2004 rules, but we include predicted changes in program rules such changes based on year of birth (e.g. Normal retirement age).

We cover the following revenues and expenditures:

Revenues
Federal Income Tax
State and City Income Taxes
Social Security Payroll Tax
Medicare Payroll Tax
Property Tax

Expenditures
Social Security Retirement benefits
Social Security Disability benefits
Supplementary Security Income (SSI)
Medical Care Costs
Medicaid
Medicare (parts A, B, and D)

6.1 Social Security benefits

Workers with 40 quarters of coverage and of age 62 are eligible to receive their retirement benefit. The benefit is calculated based on the Average Indexed Monthly Earnings (AIME) and the age at which benefits are first received. If an individual claims at his normal retirement age (NRA) (65 for those born prior to 1943, 66 for those between 1943 and 1957, and 67 thereafter), he receives his Primary Insurance Amount (PIA) as a monthly benefit. The PIA is a piece-wise linear function of the AIME. If a worker claims prior to his NRA, his benefit is lower than his PIA. If he retires after the NRA, his benefit is higher. While receiving benefits, earnings are taxed above a certain
earning disregard level prior to the NRA. An individual is eligible to half of his spouses PIA, properly adjusted for the claiming age, if that is higher than his/her own retirement benefit. A surviving spouse is eligible to the deceased spouses PIA. Since we assume prices are constant in our simulations, we do not adjust benefits for the COLA (Cost of Living Adjustment) which usually follows inflation. We however adjust the PIA bend points for increases in real wages.

6.2 Disability Insurance benefits

Workers with enough quarters of coverage and under the normal retirement age are eligible for their PIA (no reduction factor) if they are judged disabled (which we take as the predicted outcome of DI receipt) and earnings are under a cap called the Substantial Gainful Activity (SGA) limit. This limit was $\$ 9720$ in 2004. We ignore the 9 month trial period over a 5 year window in which the SGA is ignored.

6.3 Supplemental Security Income benefits

Self-reported receipt of supplemental security income (SSI) in the HRS provides estimates of the proportion of people receiving SSI under what administrative data would suggest. To correct for this bias, we link the HRS with administrative data from the social security administration identifying those receiving SSI. In the linked administrative data, 3.96% of the population receives supplementary security income, while only 2.79% of the sample reports social security income. We therefore estimate a probit of receiving SSI as a function of self-reporting social security income, as well as demographic, health, and wealth.

The benefit amount is taken from the average monthly benefits found in the 2004 Social Security Annual Statistical Supplement. We assign monthly benefit of $\$ 450$ for person aged 51 to 64 , and $\$ 350$ for persons aged 65 and older.

6.4 Medical costs estimation

In the FEM, a cost module links a person's current state-demographics, economic status, current health, risk factors, and functional status to 4 types of individual medical spending. The FEM models: total medical spending (medical spending from all payment sources), Medicare spending ${ }^{5}$, Medicaid spending (medical spending paid by Medicaid), and out of pocket spending (medical spending by the respondent). These estimates are based on pooled weighted least squares regressions of each type of spending on risk factors, self-reported conditions, and functional status, with spending inflated to constant dollars using the medical component of the consumer price index. We use the 2000-2010 Medical Expenditure Panel Survey for these regressions for persons not Medicare eligible, and the 2000-2010 Medicare Current Beneficiary Survey for spending for those that are eligible for Medicare. Those eligible for Medicare include people eligible due to age (65+) or due to disability status. Comparisons of prevalences and question wording across these different sources are provided in Tables 1 and 2, respectively.

In the baseline scenario, this spending estimate can be interpreted as the resources consumed by the individual given the manner in which medicine is practiced in the United States during the post-part D era (2006-2010). Models are estimated for total, Medicaid, out of pocket spending, and for the Medicare spending. These estimates only use the MCBS dataset.

[^4]Since Medicare spending has numerous components (Parts A and B are considered here), models are needed to predict enrollment. In 2004, 98.4% of all Medicare enrollees, and $99 \%+$ of aged enrollees, were in Medicare Part A, and thus we assume that all persons eligible for Medicare take Part A. We use the 2007-2010 MCBS to model take up of Medicare Part B for both new enrollees into Medicare, as well as current enrollees without Part B. Estimates are based on weighted probit regression on various risk factors, demographic, and economic conditions. The HRS starting population for the FEM does not contain information on Medicare enrollment. Therefore another model of Part B enrollment for all persons eligible for Medicare is estimated via a probit, and used in the first year of simulation to assign initial Part B enrollment status. Estimation results are shown in estimates table. The MCBS data over represents the portion enrolled in Part B, having a 97% enrollment rate in 2004 instead of the 93.5% rate given by Medicare Trustee's Report. In addition to this baseline enrollment probit, we apply an elasticity to premiums of -0.10 , based on the literature and simulation calibration for actual uptake through 2009 Atherly et al., 2004; Buchmueller, 2006). The premiums are computed using average Part B costs from the previous time step and the means-testing thresholds established by the ACA.

Since both the MEPS and MCBS are known to under-predict medical spending (see, e.g., Selden and Sing, 2008, and references therein), we applied adjustment factors to the predicted three types of individual medical spending so that the predicted per-capita spending in FEM equal the corresponding spending in National Health Expenditure Accounts (NHEA) for age group 55-64 in year 2004 and ages 65 and over in year 2010, respectively. Table 21 shows how these adjustment factors were determined by using the ratio of expenditures in the NHEA to expenditures predicted in the FEM.

Since 2006, the Medicare Current Beneficiaries Survey (MCBS) contains data on Medicare Part D. The data gives the capitated Part D payment and enrollment. When compared to the summary data presented in the CMS 2007 Trustee Report, the 2006 per capita cost is comparable between the MCBS and the CMS. However, the enrollment is underestimated in the MCBS, 53% compared to 64.6% according to CMS.

A cross-sectional probit model is estimated using years 2007-2010 to link demographics, economic status, current health, and functional status to Part D enrollment - see the estimates table. To account for both the initial under reporting of Part D enrollment in the MCBS, as well as the CMS prediction that Part D enrollment will rise to 75% by 2012 , the constant in the probit model is increased by 0.22 in 2006, to 0.56 in 2012 and beyond. The per capita Part D cost in the MCBS matches well with the cost reported from CMS. An OLS regression using demographic, current health, and functional status is estimated for Part D costs based on capitated payment amounts.

The Part D enrollment and cost models are implemented in the Medical Cost module. The Part D enrollment model is executed conditional on the person being eligible for Medicare, and the cost model is executed conditional on the enrollment model leading a true result, after the Monte Carlo decision. Otherwise the person has zero Part D cost. The estimated Part D costs are added with Part A and B costs to obtain total Medicare cost, and any medical cost growth assumptions are then applied.

6.5 Taxes

We consider Federal, State and City taxes paid at the household level. We also calculate Social Security taxes and Medicare taxes. HRS respondents are linked to their spouse in the HRS simulation. We take program rules from the OECD's Taxing Wages Publication for 2004. Households have basic and personal deductions based on marital status and age (>65). Couples are assumed
to file jointly. Social Security benefits are partially taxed. The amount taxable increases with other income from 50% to 85%. Low income elderly have access to a special tax credit and the earned income tax credit is applied for individuals younger than 65 . We calculate state and city taxes for someone living in Detroit, Michigan. The OECD chose this location because it is generally representative of average state and city taxes paid in the U.S. Since Social Security administrative data cannot be used jointly with Geocoded information in the HRS, we apply these hypothetical taxes to all respondents.

At the state level, there is a basic deduction for each member of the household $(\$ 3,100)$ and taxable income is taxed at a flat rate of 4%. At the city level, there is a small deduction of $\$ 750$ per household member and the remainder is taxed at a rate of 2.55%. There is however a tax credit that decreases with income (20% on the first $100 \$$ of taxes paid, 10% on the following $50 \$$ and 5% on the remaining portion).

We calculate taxes paid by the employee for Old-Age Social Insurance (SS benefits and DI) and Medicare (Medicaid and Medicare). It does not include the equivalent portion paid by the employer. OASI taxes of 6.2% are levied on earnings up to $\$ 97,500$ (2004 cap) while the Medicare $\operatorname{tax}(1.45 \%)$ is applied to all earnings.

7 Scenarios and robustness

7.1 Obesity reduction scenario

In addition the to the status quo scenario, the Future Elderly Model can be used to estimate the effects of numerous possible policy changes. One such set of policy simulations involves changing the trends of risk factors for chronic conditions. This is implemented by altering the incoming cohorts. A useful example is an obesity reduction scenario which rolls back the prevalence of obesity among 50 year-olds to its 1978 level by 2030, where it remains until the end of the scenario, in 2050. This is accomplished by reversing the annual rates of change for BMI category, hypertension, and diabetes shown in Table 5. As seen in Table 23, this will change the prevalence of obesity among the age 50+ in 2050. As compared with the status quo estimates (Table 22) the FEM predicts that by 2050, this will result in a change in the amount of Social Security benefits as well as changing combined Medicare and Medicaid expenditures.

8 Implementation

The FEM is implemented in multiple parts. Estimation of the transition and cross sectional models is performed in Stata. The incoming cohort model is estimated in Stata using the CMP package (Roodman, 2011). The simulation is implemented in $\mathrm{C}++$ to increase speed.

To match the two year structure of the Health and Retirement Study (HRS) data used to estimate the transition models, the FEM simulation proceeds in two year increments. The end of each two year step is designed to occur on July 1st to allow for easier matching to population forecasts from Social Security. A simulation of the FEM proceeds by first loading a population representative of the age 51+ US population in 2004, generated from HRS. In two year increments, the FEM applies the transition models for mortality, health, working, wealth, earnings, and benefit claiming with Monte Carlo decisions to calculate the new states of the population. The population is also adjusted by immigration forecasts from the US Census Department, stratified by race and age. If incoming cohorts are being used, the new $51 / 52$ year olds are added to the population. The
number of new $51 / 52$ year olds added is consistent with estimates from the Census, stratified by race. Once the new states have been determined and new $51 / 52$ year olds added, the cross sectional models for medical costs, and calculations for government expenditures and revenues are performed. Summary variables are then computed. Computation of medical costs includes the persons that died to account for end of life costs. Other computations, such as Social Security benefits and government tax revenues, are restricted to persons alive at the end of each two year interval. To eliminate uncertainty due to the Monte Carlo decision rules, the simulation is performed multiple times (typically 100), and the mean of each summary variable is calculated across repetitions.

FEM simulation takes as inputs assumptions regarding growth in the national wage index, normal retirement age, real medical cost growth, interest rates, cost of living adjustments, the consumer price index, significant gainful activity, and deferred retirement credit. The default assumptions are taken from the 2010 Social Security Intermediate scenario, adjusted for no price increases after 2010. Therefore simulation results are in real 2009 dollars. Table 24 shows the assumptions for each calendar year and Table 25 shows assumptions for each birth year.

Different simulation scenarios are implemented by changing any of the following components: incoming cohort model, transition models, interventions that adjust the probabilities of specific transition, and changes to assumptions on future economic conditions.

8.1 Intervention Module

The intervention module can adjust characteristics of individuals when they are first read into the simulation "init_interventions" or alter transitions within the simulation "interventions." At present, init_interventions can act on chronic diseases, ADL/IADL status, program participation, and some demographic characteristics. Interventions within the simulation can currently act on mortality, chronic diseases, and some program participation variables.

Interventions can take several forms. The most commonly used is an adjustment to a transition probability. One can also delay the assignment of a chronic condition or cure an existing chronic condition. Additional flexibility comes from selecting who is eligible for the intervention. Some examples might help to make the interventions concrete.

- Example 1: Delay the enrollment into Social Security OASI by two years. In this scenario claiming of Social Security benefits is transitioned as normal. However, if a person is predicted to claim their benefits, then that status is not immediately assigned, but is instead assigned two years later.
- Example 2: Cure hypertension for those with no other chronic diseases. In this scenario any individual with hypertension (including those who have had hypertension for many years) is cured (hypertension status is set to 0), as long as they do not have other chronic diseases. This example uses the individuals chronic disease status as the eligibility criteria for the intervention.
- Example 3: Reduce the incidence of hypertension for half of men aged 55 to 65 by 10% in the first year of the simulation, gradually increasing the reduction to 20% after 10 years. This example begins to show the flexibility in the intervention module. The eligibility criteria are more complex (half of men in a specific age range are eligible) and the intervention changes over time. Mathematically, the intervention works by acting on the incidence probability, ρ. In the first year of the simulation, the probability is replaced by $(1-0.5 * 0.1) \rho=0.95 \rho$. The binary outcome is then assigned based on this new probability. Thus, at the population level,
there is a 5% reduction in incidence for men aged 55 to 65 , as desired. After 10 years, the probability for this eligible population becomes $(1-0.5 * 0.2) \rho=0.9 \rho$.

More elaborate interventions can be programmed by the user.

9 Model development

This section gives some historical background about decisions and developments that led up to the current state of the FEM.

9.1 Transition model

Section 4.1 describes the current FEM transition model with a focus on discrete absorbing outcomes. In developing this model, it was previously assumed that the time invariant part of the hazard was composed of the effect of observed characteristics x_{i} and permanent unobserved characteristics specific to outcome $m, \eta_{i, m}$. Consequently, the index was assumed to be of the form $z_{m, j_{i}}=$ $x_{i} \beta_{m}+h_{i, j_{i}-1,-m} \gamma_{m}+\eta_{i, m}$ and the latent component of the hazard was modeled as

$$
\begin{gather*}
h_{i, j_{i}, m}^{*}=x_{i} \beta_{m}+h_{i, j_{i}-1,-m} \gamma_{m}+\eta_{i, m}+a_{m, j_{i}}+\varepsilon_{i, j_{i}, m}, \tag{6}\\
m=1, \ldots, M_{0}, j_{i}=j_{i 0}, \ldots, j_{i, T_{i}}, i=1, \ldots, N
\end{gather*}
$$

This is the same as (1), except that (6) uses unobserved characteristics $\eta_{i, m}$ instead of the effects of observed initial conditions $h_{i, j_{0},-m} \psi_{m}$. The unobserved effects $\eta_{i, m}$ are persistent over time and were allowed to be correlated across diseases $m=1, \ldots, M$. We assumed that these effects had a normal distribution with covariance matrix $\boldsymbol{\Omega}_{\eta}$.

The parameters $\theta_{1}=\left(\left\{\beta_{m}, \gamma_{m}, \varsigma_{m}\right\}_{m=1}^{M}, \operatorname{vech}\left(\boldsymbol{\Omega}_{\eta}\right)\right)$, could be estimated by maximum simulated likelihood. The joint probability, conditional on the individual frailty is the product of normal univariate probabilities. Similar to the joint probability in Section 4.1, these sequences, conditional on unobserved heterogeneity, are also independent across diseases. The joint probability over all disease-specific sequences is simply the product of those probabilities.

For a given respondent with frailty η_{i}, the probability of the observed health history is (again, omitting the conditioning on covariates for simplicity)

$$
l_{i}^{-0}\left(\theta ; \eta_{i}, h_{i, j_{00}}\right)=\left[\prod_{m=1}^{M-1} \prod_{j=j_{i 1}}^{j_{T_{i}}} P_{i j, m}\left(\theta ; \eta_{i}\right)^{\left(1-h_{i j-1, m}\right)\left(1-h_{i j, M}\right)}\right] \times\left[\prod_{j=j_{i 1}}^{j_{T_{i}}} P_{i j, M}\left(\theta ; \eta_{i}\right)\right]
$$

To obtain the likelihood of the parameters given the observables, it is necessary to integrate out unobserved heterogeneity. The complication is that $h_{i, j_{0},-m}$, the initial outcomes in each hazard, are not likely to be independent of the common unobserved heterogeneity term which needs to be integrated out. A solution is to model the conditional probability distribution $p\left(\eta_{i} \mid \mathbf{h}_{i, j_{i 0}}\right)$ (Wooldridge, 2000). Implementing this solution amounts to including initial outcomes at baseline (age 50) for each hazard. This is equivalent to writing

$$
\begin{aligned}
\eta_{i} & =\Gamma h_{i 0}+\alpha_{i} \\
\alpha_{i} & \sim \mathrm{~N}\left(0, \Omega_{\alpha}\right)
\end{aligned}
$$

Therefore, this allows for permanent differences in outcomes due to differences in baseline outcomes. The likelihood contribution for one respondent's sequence is therefore given by

$$
\begin{equation*}
l_{i}\left(\theta, \mathbf{h}_{i, j_{i 0}}\right)=\int l_{i}\left(\theta ; \alpha_{i}, \mathbf{h}_{i, j_{i 0}}\right) d F\left(\alpha_{i}\right) \tag{7}
\end{equation*}
$$

This model was estimated using maximum simulated likelihood. The likelihood contribution (7) was replaced with a simulated counterpart based on R draws from the distribution of α. The BFGS algorithm was then used to optimize over this simulated likelihood. Convergence of the joint estimator could not be obtained, so the distribution of α_{i} was assumed to be degenerate. This yielded the simpler estimation problem describe in Section 4.1, where each equation is estimated separately.

9.2 Quality adjusted life years

9.2.1 Health related quality-of-life measures

In general, HRQoL measures summarize population health by a single preference-based index measure. A HRQoL measure is a suitable measure of QALY. There are several widely-used generic HRQoL indexes, each involving a standard descriptive system: a multidimensional measure of health states and a corresponding scoring system to translate the descriptive system into a single index (Fryback et al., 2007). The scoring system is developed based on a community survey of preference valuation of health states in the descriptive system, using utility valuation methods like time trade-offs or a standard gamble.

9.2.2 Health related quality-of-life in MEPS

Because the health states measures in the HRS and FEM do not match the health states defined in any of the currently available HRQoL indexes, we used MEPS to create a crosswalk file for HRQoL index calculation. MEPS collects information on health care cost and utilization, demographics, functional status, and medical conditions. Since the year 2000, it initiated a self-administered questionnaire for two sets of instruments: SF-12 and EQ-5D.

Seven of the twelve SF-12 questions can be used to generate another HRQoL index: SF-6D. However, the scoring system for SF-6D was derived from a UK sample (Brazier and Roberts, 2004) and a significant proportion of the MEPS sample did not give valid answer for at least one of the seven questions. Therfore, we decided to calculate EQ-5D index score as the HRQoL measure for FEM.

The EQ-5D instrument includes 5 questions about the extent of problems in mobility, self-care, daily activities, pain, and anxiety/depression. The scoring system for EQ-5D was first developed by Dolan (1997) using a UK sample. Later, a scoring system based on a US sample was generated (Shaw et al. 2005). In MEPS 2001, there are 8,301 respondents aged 51 and over. Of those respondents, 7,439 gave valid answers for all of the five EQ-5D questions. We calculated EQ-5D scores for these respondents using the scoring algorithm based on a US sample (Shaw et al., 2005). The distribution of EQ-5D index scores among these respondents is shown in Figure 2.

9.2.3 MEPS-HRS Crosswalk development

The functional status measure in FEM is based on the HRS. It is a categorical variable including the following mutually exclusive categories: healthy, any IADL limitation (no ADL limitations), 1-2

Figure 2: Distribution of EQ-5D index scores for ages 51+ in 2001 MEPS

ADL limitations, and 3 or more ADL limitations. Unfortunately the measures of IADL and ADL limitations in MEPS are quite different. HRS asks questions like "Do you have any difficulty in ...", while MEPS asks questions like "Does .. .help or supervision in" As Table 13 shows, the prevalence of IADL limitations is relatively similar between the two surveys, while the prevalence of ADL limitations is much higher in HRS, relative to MEPS. This is reasonable since not all who have difficulty in ADLs receive help or supervision.

In order to compute EQ-5D index scores using functional status in the FEM, we needed a set of functional status measures that is comparable across MEPS and HRS (the host dataset for FEM). We explored several options for deriving such a measure. Ultimately, we constructed two measures. One measure indicates physical function limitation while the other measure indicates IADL limitation.

In MEPS, physical function limitation indicates that at least one of the following is true: 1) receiving help or supervision with bathing, dressing or walking around the house; 2) being limited in work/housework; 3) having difficulty walking, climbing stairs, grasping objects, reaching overhead, lifting, bending or stooping, or standing for long periods of time; or 4) having difficulty in hearing or vision. In HRS, physical function limitation indicates that at least one of the following is true: 1) having any difficulty in bathing/dressing/eating/walking across the room/getting out of bed; 2) limited in work/housework; or 3) limited in any other activities.

In MEPS, IADL limitation indicates receiving help or supervision using the telephone, paying bills, taking medications, preparing light meals, doing laundry, or going shopping. In HRS, IADL limitation indicates having difficulty in any IADL such as using the phone, managing money, or taking medications.

The prevalence of our two constructed measures among ages 51 and older in MEPS (2001) and HRS (1998) is shown in Table 14. The prevalences are quite similar across the two surveys.

Using MEPS 2001 data, we next use ordinary least squares to model the derived EQ-5D score as a function of six chronic conditions - which are available both in HRS and MEPS, our two constructed
measures of functional status, and an interaction term of the two measures of functional status. Three different models were considered. Estimation results are presented in Models I-III in Table 15. We also show the estimation results of using only IADL/ADL limitation as covariates, and using only the six chronic conditions as covariates, as Models IV and V in Table 15. Model II was used as the crosswalk described in Section 4.2 to calculate EQ-5D score for non-nursing home residents aged 51 and over in HRS 1998.

9.3 Drug Expenditures

9.3.1 Drug Expenditures - MEPS

AHRQ produces a file of consolidated annual expenditures for each Medical Expenditure Panel Survey respondent in each calendar year. The total drug expenditure variable sums all amounts paid out-ot-pocket and by third party payers for each prescription purchased in that year. For comparison across years, we convert all amounts to 2010 dollars using the Medical CPI.

9.3.2 Drug Expenditures - MCBS

The Medicare Current Beneficiary Survey produces a Prescribed Medicine Events file at the individualevent level, with cost and utilization of prescribed medicines for the MCBS community population. Collapsing this file to the individual provides an estimate of prescription drug cost for each person. For comparison across years, we convert all amounts to 2010 dollars using the Medical CPI.

There are two caveats to working with these data. The first caveat regards how to handle the "ghost" respondents. "Ghosts" are individuals who enroll in Medicare, but were not asked cost and use questions in the year of their enrollment. For some outcomes, such as medical expenditures, the MCBS makes an effort to impute. For others, such as drug utilization and expenditures, the MCBS does not. We imputed annual drug expenditures for the ghosts, but for certain age ranges the drug expenditures were not reasonable. This had the biggest effect on the 65 and 66 year olds, for two reasons. The first is that the 65 and 66 year olds are more likely to be ghosts, as 65 is the typical age of enrollment for Medicare. The second is that the 65 and 66 year olds used for imputation (i.e., the non-" ghosts") are different. To be fully present in MCBS at age 65 would require enrolling in Medicare before age 65, which happen through a different channel, such as qualifying for Medicare due to receiving disability benefits from the federal government.

The second caveat relates to the filling in zeroes for individuals with no utilization data, but who were enrolled. We assumed that individuals who were not ghosts and who did not appear on the Prescribed Medicine Events file had zero prescription expenditures.

9.3.3 Drug Expenditures - Estimation

Due to the complexities of the age 65-66 population in the MCBS, we chose to estimate the drug expenditure models using the MEPS for individuals 51 to 66 and the MCBS for individuals 67 and older. Individuals under age 65 receiving Medicare due to disability are estimated separately. Since there are a number of individuals with zero expenditures, we estimate the models in two stages. The first stage is a probit predicting any drug expenditures and the second is an ordinary least squares model predicting the amount, conditional on any. Coefficient estimates and marginal effects are shown in the accompanying Excel workbook.

10 Validation

We perform three validation exercises:

1. Data splitting
2. External validation

3. External corroboration

Data splitting is a test of the simulations internal validity that compares simulated outcomes to actual outcomes, external validation compares model forecasts with actual outcomes from other data sources, and external corroboration compares model forecasts to others forecasts.

10.1 Data Splitting

The data-splitting exercise randomly samples half of the HRS respondent IDs for use in estimating the transition models. The respondents not used for estimation, but who were present in the HRS sample in 1998, are then simulated from 1998 through 2012. Demographic, health, and economic outcomes are compared between the simulated (FEM) and actual (HRS) populations. These results are presented in Table 9 - Table 12 for 2000, 2006, and 2012, with a statistical test of the difference between the average values in the two populations.

Worth noting is how the composition of the population changes in this exercise. In 1998, the sample represents those 51 and older. Since we follow a fixed cohort, the age of the population will increase to 65 and older in 2012. This has consequences for some measures in later years where the eligible population shrinks.

10.1.1 Demographics

Demographic measures are presented in Table 10. Demographic differences between the two populations are small. The gender balance and fraction of the population that is non-Hispanic Black or Hispanic is consistent.

10.1.2 Health Outcomes

The FEM population has a slightly higher population with one or more ADL limitation in 2012 (20.3% vs 18.1%). Those with any IADL limitations are not statistically different from one another in 2012.

The two populations are not statistically different from each other for prevalence of cancer, heart disease, hypertension, or stroke in 2012. They do differ for diabetes $(25.4 \%$ for the FEM, 24.0% for the HRS), and lung disease (12.3% for the FEM, 11.2% for the HRS), though the practical significance of these differences is not clear.

10.1.3 Health Risk Factors

Average BMI and smoking behavior are not statistically different between the two populations in 2012. The nursing home population is also not statistically different between the FEM and the HRS.

On the whole, the data-splitting exercise is reassuring. Comparing simulated outcomes to actual outcomes using a set of transition models estimated on a separate population reveals that the
majority of outcomes of interest are not statistically different. In cases where they are, the practical difference is potentially low.

10.2 External Validation

The external validation exercise compares FEM full population simulations beginning in 2004 to external sources. Here we focus on per capita benefits received from Social Security, Disability, and Supplemental Security Income, followed by Medicare and Medicaid.

10.2.1 Benefits from Social Security Administration

Conditional on a simulant receiving benefits, the FEM algorithmically assigns benefits for Old Age and Survivors, Supplemental Security Income, and Disability. Here, we compare simulation results to SSA figures.

For Old Age and Survivor benefits, we compare to the Social Security Administrations December 2012 Monthly Statistical Snapshot. Table 2 of that document indicates that the average OASI monthly benefit was $\$ 1194$. FEM forecasts $\$ 1182$ for the average beneficiary for 2012.

For Supplemental Security Income we compare to Table 3 of the December 2012 Monthly Statistical Snapshot, focusing on the 65 and older population, as that is the only category that is directly comparable. SSA reports that the average monthly benefit for December of 2012 was $\$ 417$. FEM assigns $\$ 415$ to those receiving SSI.

SSA does not report a disability figure that is directly comparable to FEM forecasts. However, SSA reports average Disability benefits by age, as well as the number of individuals receiving benefits at each age. This allows us to construct the average benefit for workers 51 and older. Based on this calculation, the average disabled worker 51 and older received a benefit of $\$ 1212$ in December of 2012. Spouses of disabled workers can also receive a benefit (SSA reports a benefit of $\$ 304$ for spouses of disabled workers for all ages). The 2012 FEM forecast for the average DI beneficiary, which includes both workers and their spouses, is $\$ 1102$.

10.2.2 Benefits from Medicare and Medicaid

For medical spending, we compare FEM forecasts in 2010 to National Health Expenditure Accounts measures from 2010, the most recent year for which these data are available. NHEA reports total amounts by age range, which we then convert to per capita measures using the 2010 Census. We focus on the 65-84 and 85 plus populations, as they are directly comparable to FEM forecasts. We also aggregate the two groups to produce a 65 plus average. FEM is similar to NHEA for the 65 plus population for Medicare ($\$ 10473$ for NHEA, $\$ 10494$ for FEM) and total medical spending ($\$ 19265$ for NHEA, $\$ 19056$ for FEM). FEM estimates are higher for Medicaid spending ($\$ 2141$ for NHEA, $\$ 2818$ for FEM).

10.3 External Corroboration

Finally, we compare FEM population forecasts to Census forecasts of the US population. Here, we focus on the full HRS population (51 and older) and those 65 and older. For this exercise, we begin the simulation in 2010 and simulate the full population through 2050. Population projections are compared to the 2012 Census projections for years 2012 through 2050. FEM population forecasts are always within two percent of Census forecasts.

11 Baseline Forecasts

In this section we present baseline forecasts of the Future Elderly Model. The figures show data from the HRS for the $55+$ population from 1998 through 2012 and forecasts from the FEM for the $55+$ population beginning in 2010.

11.1 Disease Prevalence

Figure 3 depicts the six chronic conditions we project for men. And Figure 4 depicts the historic and forecasted values for women.

Figure 5 shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any IADL difficulties, and two or more IADL difficulties for men 55 and older. Figure 6 shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any IADL difficulties, and two or more IADL difficulties for women 55 and older.

Figure 3: Historic and Forecasted Chronic Disease Prevalence for Men 55+

Figure 4: Historic and Forecasted Chronic Disease Prevalence for Women 55+

Figure 5: Historic and Forecasted ADL and IADL Prevalence for Men 55+

Figure 6: Historic and Forecasted ADL and IADL Prevalence for Women 55+

12 Acknowledgments

The Future Elderly Model has been developed by a large team over the last decade. Jay Bhattacharya, Eileen Crimmins, Christine Eibner, Étienne Gaudette, Geoff Joyce, Darius Lakdawalla, Pierre-Carl Michaud, and Julie Zissimopoulos have all provided expert guidance. Adam Gailey, Baoping Shang, and Igor Vaynman provided programming and analytic support during the first years of development at RAND. In more recent years, the University of Southern California research programming team has supported model development. These programmers include Patricia St. Clair, Laura Gascue, Henu Zhao, and Yuhui Zheng. Barbara Blaylock and Wendy Cheng have greatly aided model development while working as research assistants at USC.

13 Tables

Disease	HRS	NHIS Sur	ey MEPS	MCBS
Cancer	Has a doctor ever told you that you have cancer or a malignant tumor, excluding minor skin cancers?	Have you ever been told be a doctor or other health professional that you had cancer or a malignanacy of any kind? (WHEN RECODED, SKIN CANCERS WERE EXCLUDED)	List all the conditions that have bothered (the person) from (START time) to (END time) CCS codes for the conditions list are 11-21, 24-45	Has a doctor ever told you that you had any (other) kind of cancer malignancy, or tumor other than skin cancer?
Heart Diseases	Has a doctor ever told you that you had a heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems?	Four separate questions were asked about whether ever told by a docotor or oither health professional that had: CHD, Angina, MI, other heart problems.	Have you ever been told by a doctor or health professional that you have CHD; Angina; MI; other heart problems	Six separate questions were asked about whether ever told by a doctor that had: Angina or MI; CHD; other heart problems (included four questions)
Stroke	Has a doctor ever told you that you had a stroke?	Have you EVER been told by a doctor or other health professional that you had a stroke?	If Female, add: [Other than during pregnancy,] Have you ever been told by a doctor or health professional that you have a stroke or TIA (transient ischemic attack)	[Since (PREV < SUPP. RD. INT. DATE),] has a doctor (ever) told (you/SP) that (you/he/she) had a stroke, a brain hemorrhage, or a cerebrovascular accident?
Diabetes	Has a doctor ever told you that you have diabetes or high blood sugar?	If Female, add: [Other than during pregnancy,] Have you ever been told by a doctor or health professional that you have diabetes or sugar diabetes?	If Female, add: [Other than during pregnancy,] Have you hever been told by a doctor or health professional that you have diabetes or sugar diabetes?	Has a doctor (ever) told (you/SP) that (you/he/she) had diabetes, high blood sugar, or sugar in (your/his/her) urine? [DO NOT INCLUDE BOERDERLINE PREGNANCY, OR PREDIABETEIC DIABETES.]
Hypertension	Has a doctor ver told you that you have high blood pressure or hypertension?	Have you EVER been told by a doctor or other health professional that you had Hypertension, also called high blood pressure?	Have you EVER been told by a doctor or other health professional that you had Hypertension, also called high blood pressure?	Has a doctor (ever) told (you/SP) that (you/he/she) (still) (had) (have/has) hypertension, sometimes called high blood pressure?
Lung Disease	Has a doctor ever told you that you have chronic lung disease such a schronic bronchitis or emphysema? [IWER: DO NOT INCLUDE ASTHMA]	Question 1: During the PAST 12 MONTHS, have you ever been told by a doctor or other health professional that you had chronic bronchitis? Question 2: Have you EVER been told by a docotor or other health professional that you had emphysema?	List all the conditions that have bothered (the person) from (START time) to (END time) CCS codes for the conditions list are 127, 129-312	Has a doctor (ever) told (you/SP) that (you/he/she) had emphysema, asthma, or COPD? $[\mathrm{COPD}=\mathrm{CHRONIC}$ OBSTRUCTIVE PULMONARY DISEASE.]
$\begin{aligned} & \text { Overweight } \\ & \hline \text { Obese } \end{aligned}$		Self-reported bo	eight and height	

Table 2: Survey questions used to determine health conditions

Conditions	Data source	Projection method	Other sources
Diabetes Heart disease Hypertension	National Health Interview Survey 1997-2006	Use synthetic cohort approach to estimate age-specific incidence rate for each condition	There are other forecasts (Honeycutt et al. 2003 Mainous III et al. 2007, for the trends of diabetes in the U.S population; we compare their forecasts to ours and they are reasonably close
Overweight and obese	Prevalence of over-weight and obese for aged 46-56 from year 2001 to 2030, generated by Ruhm upon request	Assume annual rate of change during year 2031-2050 linearly decreases from the 2030 rate to zero in 2050	Ruhm (2007)
Ever-smoked and smoking now	Forecast of prevalence of ever-smoked and smoking for aged for from year to 2025, by Levy 2005 Lev.	For ever-smoked, assume that the prevalence at age 45-54 in year 2035 (2045) is the same as prevalence at age 35-44 (25-34) in year 2025. Assume that the annual change in prevalence at age 45-54 in year 2046-2050 the same as average in 2040-2045. For smoking-now, after year 2025, use the moving average of the past five years	
Any DB from current job		Assume annual relative declining rate for DB entitlement decrease by 2% a year	Historical trends of DB participation rates among all persons by different birth cohorts and by age, by Poterba et al. 2007 .
Any DC from current job		Assume annual relative increasing rate for DC entitlement increase by 2% a year until 2026 then stays the same after 2026	Forecast of DC participation rates among all persons by different birth cohorts and by age, by Poterba et al. (2008)
Population size $50-52$ Male Hispanic Non- Hispanic black	Census Bureau$2000-2010$ Inter-censal Popula-tion Estimates,$2012 \quad$ NationalPopulation Es-timates, and2012 NationalPopulation Projections	Projected 2060-2080 using linear trend based on 2040-2060	

Table 3: Data sources and methods for projecting future cohort trends
Ratio of future prevalence to 2004 prevalence for $51-52$ year olds

Year	Binary outcomes			Ordered outcomes (highest category)		Censored discrete outcomes	
	Hypertension	Heart Disease	Diabetes	BMI Status $(\mathrm{BMI} \geq 40)$	Smoking Status (smoking now)	Any DB Plan	Any DC Plan
2010	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2020	1.06	0.95	1.11	1.40	0.83	0.82	1.26
2030	1.08	0.92	1.14	1.81	0.67	0.67	1.41
2040	1.10	0.90	1.16	2.18	0.54	0.55	1.41
2050	1.11	0.88	1.18	2.31	0.43	0.45	1.41

Table 4: Projected baseline trends for future cohorts

	Prevalence		
Condition	Annual rate of change to get 1978 prevalence by 2030		
$30 \leq \mathrm{BMI}<35\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	0.112	0.224	-0.026
$35 \leq \mathrm{BMI}<40\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	0.028	0.058	-0.028
BMI $>=40\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	0.014	0.040	-0.040
Hypertension	0.326	0.335	-0.001
Diabetes	0.047	0.094	-0.026
Currently smoking	0.398	0.281	0.013

Table 5: Prevalence of obesity, hypertension, diabetes and current smokers among ages 46-56 in 1978 and 2004. Prevalence in 1978 is based on NHANES II 1976-1980; Prevalence in 2004 is based on NHANES 2003-2004. BMI is calculated using self-reported weight and height.

Table 6: Outcomes in the transition model. Estimation sample is HRS 1991-2008 waves.

Table 8: Desciptive statistics for exogeneous control variables in 2004 HRS ages $51+$ sample used as simulation stock population

	2000			2006			2012		
Outcome	$\begin{aligned} & \text { FEM } \\ & \text { mean } \end{aligned}$	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p	$\begin{aligned} & \text { FEM } \\ & \text { mean } \end{aligned}$	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p	FEM mean	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p
Died	0.053	0.057	0.101	0.068	0.079	0.001	0.084	0.084	0.886
Lives in nursing home	0.023	0.022	0.339	0.034	0.030	0.145	0.045	0.038	0.030

Table 9: Data-splitting validation of 1998 cohort: Simulated vs reported mortality and nursing home outcomes in 2000, 2006, and 2012

Outcome	2000			2006			2012		
	$\begin{aligned} & \text { FEM } \\ & \text { mean } \end{aligned}$	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p	FEM mean	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p	FEM mean	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p
Age on July 1st	66.722	66.568	0.207	70.694	70.590	0.403	74.655	74.720	0.606
Black	0.087	0.089	0.586	0.086	0.083	0.410	0.084	0.082	0.800
Hispanic	0.060	0.060	0.952	0.062	0.061	0.882	0.066	0.064	0.598
Male	0.454	0.447	0.308	0.449	0.439	0.169	0.443	0.429	0.095

Table 10: Data-splitting validation of 1998 cohort: Simulated vs reported demographic outcomes in 2000, 2006, and 2012

	2000			2006			2012		
Outcome	$\begin{aligned} & \text { FEM } \\ & \text { mean } \end{aligned}$	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p	FEM mean	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p	FEM mean	$\begin{gathered} \text { HRS } \\ \text { mean } \end{gathered}$	p
Any ADLs	0.154	0.155	0.817	0.170	0.176	0.272	0.203	0.181	0.000
Any IADLs	0.076	0.075	0.588	0.087	0.091	0.336	0.111	0.111	0.915
Cancer	0.119	0.116	0.482	0.168	0.163	0.267	0.215	0.216	0.910
Diabetes	0.143	0.139	0.349	0.199	0.193	0.259	0.254	0.240	0.042
Heart Disease	0.199	0.202	0.587	0.254	0.258	0.607	0.322	0.318	0.580
Hypertension	0.456	0.440	0.011	0.568	0.567	0.904	0.660	0.658	0.840
Lung Disease	0.075	0.071	0.176	0.103	0.091	0.003	0.123	0.112	0.026
Stroke	0.064	0.069	0.061	0.088	0.095	0.119	0.114	0.116	0.755

Table 11: Data-splitting validation of 1998 cohort: Simulated vs reported binary health outcomes in 2000, 2006, and 2012

									2000			2006				2012		
	FEM	HRS		FEM	HRS		FEM	HRS										
Outcome	mean	mean	p	mean	mean	p	mean	mean	p									
BMI	27.128	27.108	0.756	27.418	27.674	0.001	27.509	27.646	0.135									
Current smoker	0.151	0.152	0.822	0.115	0.117	0.658	0.096	0.091	0.239									
Ever smoked	0.591	0.593	0.788	0.580	0.582	0.698	0.563	0.565	0.779									

Table 12: Data-splitting validation of 1998 cohort: Simulated vs reported risk factor outcomes in 2000, 2006, and 2012

	MEPS 2001 (ages 51+)			
		ADL limitation		
IADL		No	Yes	All
limitation	Yos	41.5	0.4	92.0
	Yll	95.9	3.7	8.0
		4.1	100.0	

HRS 1998 (ages 51+)
ADL limitation

		No	Yes	All
IADL	No	82.0	10.5	92.5
limitation	Yes	3.1	4.5	7.5
	All	85.1	14.9	100.0

Table 13: Prevalence of IADL and ADL limitations among ages 51+ in MEPS 2001 and HRS 1998. The IADL limitations in MEPS are defined as receiving help or supervision using the telephone, paying bills, taking medications, preparing light meals, doing laundry, or going shopping; the ADL limitations in HRS are defined as receiving help or supervision with personal care such as bathing, dressing, or getting around the house. The IADL limitations in HRS are defined as having any difficulty in at least one of the following activities: using the phone, taking medications, and managing money. The ADL limitations in HRS are defined as having any difficulty in at least one of the following activities: bathing, dressing, eating, walking across the room, and getting out of bed.

	MEPS 2001 (ages 51+) Physical function limitation					HRS 1998 (ages 51+) Physical function limitation			
		No	Yes	All			No	Yes	All
IADL	No	61.6	30.4	92.0	IADL	No	60.0	32.5	92.5
limitation	Yes	0.3	7.8	8.0	limitation	Yes	1.0	6.5	7.5
	All	61.9	38.2	100.0		All	61.0	39.0	100.0

Table 14: Prevalence of IADL limitation and physical function limitation among ages 51+ in MEPS 2001 and HRS 1998. The definition of IADL limitation is the same as in Table 13. Physical function limitation in MEPS indicates that at least one of the following is true: 1) receiving help or supervision with bathing, dressing or walking around the house; 2) being limited in work/housework; 3) having difficulty walking, climbing stairs, grasping objects, reaching overhead, lifting, bending or stooping, or standing for long periods of time; or 4) having difficulty in hearing or vision. Physical function limitation in HRS indicates at least one of the following is true: 1) having any difficulty in bathing/dressing/eating/walking across the room/getting out of bed; 2) limited in work/housework; or 3) limited in any other activities.

	Model I	Model II	Model III	Model IV	Model V
Constant	$\begin{array}{r} 0.877^{* * *} \\ (0.002) \end{array}$	$\begin{array}{r} 0.898^{* * *} \\ (0.003) \end{array}$	$\begin{array}{r} 0.874^{* * *} \\ (0.005) \end{array}$	$\begin{array}{r} 0.839^{* * *} \\ (0.002) \end{array}$	$\begin{gathered} 0.869^{* * *} \\ (0.003) \end{gathered}$
Physical function limitation	$\begin{array}{r} -0.115^{* * *} \\ (0.004) \end{array}$	$\begin{array}{r} -0.098^{* * *} \\ (0.005) \end{array}$	$\begin{array}{r} -0.094^{* * *} \\ (0.004) \end{array}$		
IADL limitation	$\begin{gathered} -0.041 \\ (0.037) \end{gathered}$	$\begin{gathered} -0.019 \\ (0.042) \end{gathered}$	$\begin{gathered} -0.008 \\ (0.036) \end{gathered}$		
IADL limitation * Physical function limitation	$\begin{array}{r} -0.150^{* * *} \\ (0.037) \end{array}$	$\begin{array}{r} -0.156^{* * *} \\ (0.044) \end{array}$	$\begin{array}{r} -0.162^{* * *} \\ (0.037) \end{array}$		
IADL limitation, no ADL limitation				$\begin{array}{r} -0.182^{* * *} \\ (0.009) \end{array}$	
Any ADL limitation				$\begin{array}{r} -0.344^{* * *} \\ (0.010) \end{array}$	
Ever diagnosed with cancer		$\begin{gathered} -0.011 \\ (0.009) \end{gathered}$	$\begin{array}{r} -0.015^{* *} \\ (0.007) \end{array}$		$\begin{array}{r} -0.030^{* * *} \\ (0.010) \end{array}$
Ever diagnosed with diabetes		$\begin{array}{r} -0.034^{* * *} \\ (0.007) \end{array}$	$\begin{array}{r} -0.032^{* * *} \\ (0.005) \end{array}$		$\begin{array}{r} -0.054^{* * *} \\ (0.007) \end{array}$
Ever diagnosed with high blood pressure		$\begin{array}{r} -0.030^{* * *} \\ (0.004) \end{array}$	$\begin{array}{r} -0.028^{* * *} \\ (0.004) \end{array}$		$\begin{array}{r} -0.043^{* * *} \\ (0.005) \end{array}$
Ever diagnosed with heart disease		$\begin{array}{r} -0.024^{* * *} \\ (0.006) \end{array}$	$\begin{array}{r} -0.029^{* * *} \\ (0.005) \end{array}$		$\begin{array}{r} -0.055^{* * *} \\ (0.006) \end{array}$
Ever diagnosed with lung disease		$\begin{array}{r} -0.036^{* * *} \\ (0.009) \end{array}$	$\begin{array}{r} -0.032^{* * *} \\ (0.007) \end{array}$		$\begin{array}{r} -0.055^{* * *} \\ (0.010) \end{array}$
Ever diagnosed with stroke		$\begin{array}{r} -0.045^{* * *} \\ (0.012) \end{array}$	$\begin{array}{r} -0.046^{* * *} \\ (0.008) \end{array}$		$\begin{array}{r} -0.115^{* * *} \\ (0.013) \end{array}$
Age 65-74			$\begin{gathered} 0.010^{* *} \\ (0.004) \end{gathered}$		
Age 75 and over			$\begin{array}{r} 0.015^{* * *} \\ (0.005) \end{array}$		
Male			$\begin{array}{r} 0.028^{* * *} \\ (0.004) \end{array}$		
Non-Hispanic black			$\begin{array}{r} 0.008 \\ (0.007) \end{array}$		
Hispanic			$\begin{array}{r} -0.001 \\ (0.007) \end{array}$		
Less than HS			$\begin{array}{r} -0.022^{* * *} \\ (0.005) \end{array}$		
Some college			$\begin{array}{r} 0.016^{* * *} \\ (0.005) \end{array}$		
College grad			$\begin{array}{r} 0.037^{* * *} \\ (0.005) \end{array}$		
Census region: Northeast			$\begin{array}{r} 0.003 \\ (0.005) \end{array}$		
Census region: Midwest			$\begin{array}{r} 0.004 \\ (0.005) \end{array}$		
Census region: West			$\begin{array}{r} -0.012^{* *} \\ (0.005) \end{array}$		
Marital status:widowed			$\begin{array}{r} 0.003 \\ (0.005) \end{array}$		
Marital status: single			$\begin{array}{r} -0.013^{* * *} \\ (0.005) \end{array}$		
N	7,358	7,317	7,317	7,361	7,322
Adjusted R^{2}	. 24	. 27	. 29	18	. 11

Table 15: OLS regressions of EQ-5D utility index among ages 51+ in MEPS 2001. p-values in parentheses. Data source: MEPS 2001 (ages 51才). EQ-5D scoring algorithm is based on Shaw et al. (2005).

Ever diagnosed with cancer	-0.020^{*}
Ever diagnosed with diabetes	(0.001)
	-0.042^{*}
Ever diagnosed with heart disease	(0.001)
	-0.044^{*}
Ever diagnosed with high blood pressure	$-0.001)$
Ever diagnosed with lung disease	(0.001)
	-0.054^{*}
Ever diagnosed with stroke	(0.001)
	-0.067^{*}
IADL limitation only	(0.002)
	-0.160^{*}
One or two ADL limitations	(0.002)
	-0.099^{*}
Three or more ADL limitations	(0.001)
	-0.149^{*}
Constant	(0.002)
N	0.881^{*}
Adjusted $R^{2} \quad(0.001)$	
	19,676

Table 16: OLS regression of the predicted EQ-5D index score against chronic conditions and FEMtype functional status specification. p-values in parentheses. Data source: Health and Retirement Study, 1998. Sample included the age 51 and over community respondents. EQ-5D score was predicted using Model II in Table 15 .
Prevalence of chronic conditions

Functional status	Predicted			Heart				Lung	
	Estimate	EQ-5D score	Age	Cancer	Diabetes	disease	Hypertension	disease	Stroke
Healthy	Mean	0.841	63.9	0.114	0.142	0.189	0.481	0.072	0.045
	Sd	0.042	10.0	0.318	0.349	0.391	0.500	0.258	0.207
	Std. err	0.000	0.0	0.001	0.001	0.001	0.001	0.001	0.001
IADL limitation only - not in nursing home	Mean	0.655	70.0	0.151	0.223	0.334	0.581	0.152	0.162
	Sd	0.054	12.9	0.358	0.416	0.472	0.493	0.359	0.368
	Std. err	0.001	0.2	0.005	0.005	0.006	0.006	0.005	0.005
1 or 2 ADL limitations not in nursing home	Mean	0.705	69.1	0.180	0.291	0.393	0.665	0.194	0.162
	Sd	0.057	12.0	0.384	0.454	0.488	0.472	0.395	0.368
	Std. err	0.000	0.1	0.003	0.003	0.004	0.003	0.003	0.003
3 or more ADL limitations not in nursing home	Mean	0.636	70.9	0.181	0.361	0.467	0.691	0.216	0.314
	Sd	0.063	13.2	0.385	0.480	0.499	0.462	0.412	0.464
	Std. err	0.001	0.2	0.005	0.006	0.006	0.006	0.005	0.006
Nursing home residency	Mean	0.568	82.0	0.144	0.256	0.428	0.651	0.142	0.372
	Sd	0.077	10.0	0.351	0.437	0.495	0.477	0.349	0.484
	Std. err	0.001	0.2	0.006	0.008	0.009	0.008	0.006	0.009
All	Mean	0.808	65.2	0.125	0.170	0.229	0.514	0.094	0.076
	Sd	0.083	10.9	0.331	0.375	0.420	0.500	0.291	0.266
	Std. err	0.000	0.0	0.001	0.001	0.001	0.001	0.001	0.001

Table 17: Average predicted EQ-5D score, age, and prevalence of chronic conditions by functional status for the stock FEM simulation sample (ages 51 and over in 2004). EQ-5D scores were predicted according to parameter estimates in Table 16 . The predicted score for nursing home residents is reduced by 10% to account for the fact that the estimation sample in Table 16 only includes non-nursing home residents.

			Selection	1992	2004
	working for	pay	all	0.75	0.78
	non-zero we	alth	all	0.97	0.98
	hypertens		all	0.29	0.39
Binary	heart dise		all	0.08	0.09
	diabete		all	0.07	0.12
	any health ins	rance	all	0.86	0.86
	SRH fair or	poor	all	0.18	
		normal	all	0.37	0.21
		overweight	all	0.40	0.39
	BMI status	$30 \leq \mathrm{BMI}<35$	all	0.17	0.26
		$35 \leq$ BMI <40	all	0.04	0.09
Ordered		BMI ≥ 40	all	0.02	0.05
		never smoked	all	0.36	0.44
	Smoking status	former smoker	all	0.35	0.32
		current smoker	all	0.29	0.24
	Functional status	no ADL	all	0.92	0.88
	Functional status	no IADL	all	0.91	0.93
Continuous	AIME (nomina	\$USD)	all		2,166.15
Continuo	quarters of co	erage	all		100.56
	earning		if working	45,750.76	47,422.59
Censored continuous	wealth		if non-zero	290,582.06	322,743.25
	DC weal		if dc plan	19.14	25.98
Censored discrete	any DB p		if working	0.44	0.50
Censored discrete	any DC p		if working	0.25	0.28
		<52		0.38	
	Early age eligible DB	52-57		0.12	
		58>		0.37	
Censored ordered		<57		0.38	
		57-61		0.10	
	Normal age eligible DB	62-63		0.17	
		$64>$		0.10	
	hispani		all	0.07	0.11
	black		all	0.10	0.12
	male		all	0.48	0.49
	less high sc		all	0.21	0.10
Covariates	college		all	0.41	0.60
Covariates	single		all	0.19	0.27
	widowe		all	0.04	0.02
	cancer		all	0.04	0.06
	lunge dise		all	0.04	0.05

Table 18: Initial conditions used for estimation (1992) and simulation (2004)

Covariate	Hypertension	Heart	Diabetes	Any health insurance	Self-reported	Weight status	Smoking	Functional status (ADL)	Functional (IADL)	Working	Nonzero	AIME	Quarters worked	$\underset{\text { wealth) }}{\text { IHT(HH }}$	IHT(earned income)	$\underset{\text { wealth }}{\log (\mathrm{DC}}$	$\underset{\text { Any DC }}{\text { plan }}$	$\underset{\text { plan }}{\text { Any DB }}$	Early retirement	Normal retirement
Non-Hispanic black	0.52	0.03	0.45	-0.13	0.49	0.39	-0.12	0.27	0.26	-0.06	-0.88	-20.02	-0.05	-0.04	-0.01	0.14	${ }_{-0.06}$	-0.05	age	
Hispanic	-0.03	-0.14	0.27	${ }^{-0.67}$	0.49	0.22	-0.37	0.31	0.27	-0.14	-0.86	-17.66	-3.29	-0.04	-0.27	-0.23	0.07	0.04		
Less than high school	0.10	0.12	0.22	-0.53	0.49	0.10	0.31	0.25	0.42	-0.35	-0.42	-14.79	-2.98	-0.06	-0.29	-0.31	0.06	0.07		∞
Some college and above	-0.06	-0.06	-0.09	0.19	-0.36	-0.16	-0.12	-0.23	-0.31	0.27	0.73	14.26	5.38	0.10	0.24	0.21	-0.07	-0.16		등
Male	0.10	0.26	0.06	0.04	0.03	0.11	0.42	-0.03	-0.14	0.56	0.00	-2.53	6.90	0.12	0.13	0.13	-0.09	-0.01		
Single	0.18	0.06	0.04	-0.23	0.24	-0.04	0.32	0.11	0.05	0.04	-1.09	-25.92	0.35	-0.02	0.05	-0.04	-0.00	0.07		\%
Widowed	0.16	0.14	0.22	-0.37	0.32	0.13	0.26	0.08	-0.03	0.07	-1.08	-20.13	-0.05	-0.08	0.12	-0.03	-0.12	-0.10		
Lung disease	0.29	0.72	0.44	-0.03	1.13	0.10	0.56	0.84	0.28	-0.56	-0.04	-17.44	-1.31	-0.02	-0.15	0.06	0.04	0.00		$\stackrel{\rightharpoonup}{7}$
Cancer	0.10	0.22	0.10	0.24	0.66	-0.09	0.16	0.37	0.07	-0.12	0.26	-0.20	0.30	-0.04	0.01	-0.07	-0.09	-0.21		-
constant	-0.69	-1.56	-1.68	1.28	-1.21	0.28	0.10	-1.51	-1.35	0.44	2.73	71.97	15.12	0.68	-0.59	0.09	0.36	0.32		

	Hypertension	$\begin{gathered} \text { Heart } \\ \text { disease } \end{gathered}$	Diabetes	Any health insurance	Self-reported health	Weight status	Smoking status	Functional status (ADL)	Functional status (IADL)	Working	Nonzero	AIME	$\begin{aligned} & \text { Quarters } \\ & \text { worked } \end{aligned}$	$\begin{aligned} & \text { IHT(HHT } \\ & \text { wealth) } \end{aligned}$	IHT(earned income)	$\begin{aligned} & \text { Log(DC } \\ & \text { wealth }) \end{aligned}$	$\begin{gathered} \text { Any DC } \\ \text { plan } \end{gathered}$	$\begin{array}{r} \text { Any DB } \\ \text { plan } \end{array}$	$\begin{gathered} \text { Early } \\ \text { retirement } \\ \text { age } \end{gathered}$	$\begin{array}{r} \text { Normal } \\ \text { retirement } \\ \text { age } \end{array}$
Hypertension	1.000																			
Heart Disease	0.312	1.000																		
Diabetes	0.309	0.222	1.000																	
Any health insurance	0.007	-0.000	-0.005	1.000																
Self-repoted health	0.333	0.500	0.439	-0.078	1.000															
Weight status	0.282	0.137	0.241	0.009	0.148	1.000														
Smoking status	-0.014	0.004	0.011	-0.104	0.071	-0.091	1.000													
Functional status (ADL)	0.205	0.317	${ }^{0.279}$	-0.052	${ }_{0}^{0.501}$	0.144	${ }^{0.028}$	${ }^{1.000}$												듬
Functional status (IADL)	0.075	0.105	${ }^{0.073}$	-0.035	0.170	${ }^{0.039}$	-0.022	${ }^{0.195}$	${ }^{1.000}$											$\frac{\square}{0}$
Working	-0.160	-0.288	-0.237	0.144	-0.412	${ }^{-0.016}$	-0.048	-0.387	-0.177	1.000										9
Nonzero wealth	-0.155	-0.172	-0.082	0.249	-0.259	-0.023	-0.087	-0.173	-0.230	${ }^{0.392}$	1.000									$\stackrel{\square}{\square}$
${ }^{\text {IHT (HH wealth) }}$	-2.406	-2.504	-5.633	${ }^{6.743}$	-6.607	-2.526	-4.539	-6.178	-2.624	2.244	0.000	1290.806								$\underline{\sim}$
${ }^{\text {IHT (earned income) }}$	0.178	0.050	-0.347	${ }^{3.282}$	-1.278	${ }^{0.023}$	-0.450	-0.973	-0.769 -0.014	0.000 0.000	2.216	56.260 2.498	86.749 0805							
Log(DC wealth)	0.011	0.001	${ }^{0.001}$	0.028	-0.013	-0.014	-0.017	0.013	-0.014	${ }^{0.000}$	-0.034	2.498	${ }^{0.805}$	${ }^{0.066}$						
Any DC plan	0.035	0.044	${ }^{0.058}$	0.511	-0.067	0.008	-0.091	-0.056	-0.048	${ }^{0.000}$	${ }^{0.183}$	2.918	3.449	${ }^{0.0000}$	1.000					
Any DB plan	0.065	0.045	0.030	0.691	-0.045	0.018	-0.085	-0.036	-0.043	0.000	0.216	1.036	4.510	-0.019	0.737	1.000				
Early retirement age	${ }_{0}^{0.061}$	${ }^{-0.028}$	-0.040	${ }_{0}^{0.075}$	0.030	${ }^{-0.003}$	${ }_{0}^{0.012}$	${ }_{0}^{0.033}$	0.002 -0.007	0.000 0.000	-0.016 -0.037	0.453 0.415	-0.293 0.032	0.006 0.009	-0.208 -0.200	0.000 0.000	1.000 0.834			
Normal retirement age	0.076	-0.032	0.011	0.081	0.039	-0.004	0.012	0.053	-0.007	0.000	-0.037	0.415	0.032	0.009	-0.200	0.000	0.834	1.000		

Ages 55-64				Ages 65 and over		
	NHEA	FEM 2004,	Adjustment	NHEA	FEM 2010,	Adjustment
Payment	$2004(\$)$	unadjusted $(\$)$	factor	$2010(\$)$	unadjusted $(\$)$	factor
sources	(A)	(B)	$(\mathrm{A}) /(\mathrm{B})$	(C)	(D)	$(\mathrm{C}) /(\mathrm{D})$
Total	7787.00	7013.00	1.11	18424.00	15901.00	1.16
Medicare	706.00	598.00	1.18	10016.00	8711.00	1.15
Medicaid	1026.00	656.00	1.56	2047.00	1215.00	1.68

Table 21: Per capita medical spending by payment source, age group, and year

Year	2010	2030	2050
Population 51+ (Million)	100.19	129.94	150.20
Population 65+ (Million)	45.17	74.93	84.57
Prevalence of selected conditions for ages 51+			
Obesity (BMI $>=30)(\%)$	0.34	0.43	0.49
Overweight $(25 \quad=$ BMI $<30)(\%)$	0.37	0.33	0.30
Ever-smoked	0.56	0.49	0.40
Smoking now	0.15	0.10	0.06
Diabetes	0.20	0.32	0.37
Heart disease	0.20	0.28	0.29
Hypertension	0.54	0.65	0.68
Labor participation for ages 51+			
Working (\%)	0.46	0.40	0.40
Average earnings if working (\$2010)	47881.74	53282.88	67189.39
Government revenues from ages 51+ (Billion \$2010)			
Federal personal income taxes	393.40	606.09	977.84
Social security payroll taxes	118.79	174.20	267.40
Medicare payroll taxes	32.16	42.18	62.97
Total Revenue	544.34	822.47	1308.20
Government expenditures from ages 51+ (Billion \$2010)			
Old Age and Survivors Insurance benefits (OASI)	655.37	1144.62	1611.29
Disability Insurance benefits (DI)	59.08	43.94	62.80
Supplementary Security Income (SSI)	21.78	27.28	39.26
Medicare costs	609.32	1229.96	2398.27
Medicaid costs	164.15	297.47	737.53
Medicare + Medicaid	1509.70	2743.27	4849.15
Total medical costs for ages 51+ (Billion $\$ 2010)$	1397.00	2806.29	5581.84

Table 22: Simulation results for status quo scenario

Year	"Obese 1980" Estimates		Relative Change from Status Quo		Absolute Change from Status Quo	
	2030	2050	2030	2050	2030	2050
Population 51+ (Million)	130.49	153.92	0.00	0.02	0.56	3.72
Population 65+ (Million)	75.29	88.08	0.00	0.04	0.36	3.51
Prevalence of selected conditions for ages 51+						
Obesity (BMI >=30) (\%)	0.31	0.27	-0.28	-0.45	-0.12	-0.22
Overweight ($25<=\mathrm{BMI}<30$) (\%)	0.36	0.36	0.10	0.19	0.03	0.06
Ever-smoked	0.47	0.38	-0.04	-0.05	-0.02	-0.02
Smoking now	0.09	0.05	-0.07	-0.07	-0.01	-0.00
Diabetes	0.26	0.26	-0.19	-0.29	-0.06	-0.11
Heart disease	0.27	0.28	-0.03	-0.06	-0.01	-0.02
Hypertension	0.63	0.65	-0.03	-0.05	-0.02	-0.04
Labor participation for ages 51+						
Working (\%)	0.41	0.40	0.02	0.01	0.01	0.00
Average earnings if working (\$2010)	53,446.14	67,163.41	0.00	-0.00	163.26	-25.98
Government revenues from ages 51+ (Billion \$2010)						
Federal personal income taxes	610.25	1,004.72	0.01	0.03	4.16	26.89
Social security payroll taxes	178.12	276.43	0.02	0.03	3.92	9.03
Medicare payroll taxes	43.14	65.11	0.02	0.03	0.95	2.14
Total Revenue						
Government expenditures from ages 51+ (Billion \$2010)						
Old Age and Survivors Insurance benefits (OASI)	1,146.40	1,673.15	0.00	0.04	1.78	61.87
Disability Insurance benefits (DI)	40.10	55.71	-0.09	-0.11	-3.84	-7.09
Supplementary Security Income (SSI)	25.78	38.07	-0.05	-0.03	-1.49	-1.19
Medicare costs	1,210.02	2,326.32	-0.02	-0.03	-19.94	-71.96
Medicaid costs	289.70	708.29	-0.03	-0.04	-7.76	-29.24
Medicare + Medicaid						
Total medical costs for ages 51+ (Billion \$2010)	2,740.44	5,396.33	-0.02	-0.03	-65.85	-185.51

[^5]| Calendar year | National
 Wage Index | Real interest rate on wealth | COLA | Consumer Price Index | Substantial Gainful Activity | Y-o-Y excess real growth in medical costs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | 35648.55 | 154.7553 | 3.606042 | 188.9 | 9720 | . 015 |
| 2005 | 36952.94 | 157.0766 | 3.703405 | 195.3 | 9960 | . 0148 |
| 2006 | 38651.41 | 158.3332 | 3.855245 | 201.6 | 10320 | . 0147 |
| 2007 | 40405.48 | 160.0749 | 3.982468 | 207.342 | 10800 | . 0145 |
| 2008 | 41334.97 | 163.1163 | 4.074064 | 215.303 | 11280 | . 0143 |
| 2009 | 42188.9 | 163.7688 | 4.31036 | 214.537 | 11760 | . 0141 |
| 2010 | 42907.15 | 171.4659 | 4.31036 | 214.537 | 12000 | . 0139 |
| 2011 | 43620.13 | 173.6949 | 4.31036 | 214.537 | 12000 | . 0138 |
| 2012 | 44197.64 | 176.4741 | 4.31036 | 214.537 | 12120 | . 0136 |
| 2013 | 44678.93 | 180.533 | 4.31036 | 214.537 | 12480 | . 0134 |
| 2014 | 45126.4 | 185.2268 | 4.31036 | 214.537 | 12840 | . 0133 |
| 2015 | 45737.88 | 190.7836 | 4.31036 | 214.537 | 13080 | . 0131 |
| 2016 | 46166.54 | 196.8887 | 4.31036 | 214.537 | 12699.34 | . 0129 |
| 2017 | 46633.77 | 202.5985 | 4.31036 | 214.537 | 12827.86 | . 0128 |
| 2018 | 47117.93 | 208.2712 | 4.31036 | 214.537 | 12961.05 | . 0126 |
| 2019 | 47609.11 | 214.1028 | 4.31036 | 214.537 | 13096.16 | . 0124 |
| 2020 | 48107.48 | 220.0977 | 4.31036 | 214.537 | 13233.25 | . 0122 |
| 2021 | 48615.77 | 226.2604 | 4.31036 | 214.537 | 13373.07 | . 0121 |
| 2022 | 49124.07 | 232.5957 | 4.31036 | 214.537 | 13512.89 | . 0119 |
| 2023 | 49625.12 | 239.1084 | 4.31036 | 214.537 | 13650.72 | . 0117 |
| 2024 | 50148.08 | 245.8035 | 4.31036 | 214.537 | 13794.57 | . 0115 |
| 2025 | 50681.91 | 252.6859 | 4.31036 | 214.537 | 13941.41 | . 0114 |
| 2026 | 51221.7 | 259.7611 | 4.31036 | 214.537 | 14089.9 | . 0112 |
| 2027 | 51773.64 | 267.0345 | 4.31036 | 214.537 | 14241.72 | . 011 |
| 2028 | 52331.86 | 274.5114 | 4.31036 | 214.537 | 14395.28 | . 0109 |
| 2029 | 52896.8 | 282.1978 | 4.31036 | 214.537 | 14550.68 | . 0107 |
| 2030 | 53472.1 | 290.0993 | 4.31036 | 214.537 | 14708.93 | . 0105 |
| 2031 | 54060.84 | 298.2221 | 4.31036 | 214.537 | 14870.88 | . 0104 |
| 2032 | 54659.91 | 306.5723 | 4.31036 | 214.537 | 15035.67 | . 0101 |
| 2033 | 55273.43 | 315.1563 | 4.31036 | 214.537 | 15204.43 | . 01 |
| 2034 | 55892.85 | 323.9807 | 4.31036 | 214.537 | 15374.82 | . 0097 |
| 2035 | 56518.25 | 333.0521 | 4.31036 | 214.537 | 15546.86 | . 0094 |
| 2036 | 57149.05 | 342.3776 | 4.31036 | 214.537 | 15720.37 | . 0091 |
| 2037 | 57790.2 | 351.9642 | 4.31036 | 214.537 | 15896.74 | . 0088 |
| 2038 | 58444.8 | 361.8192 | 4.31036 | 214.537 | 16076.81 | . 0085 |
| 2039 | 59104.39 | 371.9501 | 4.31036 | 214.537 | 16258.24 | . 0082 |
| 2040 | 59771.73 | 382.3647 | 4.31036 | 214.537 | 16441.81 | . 0079 |
| 2041 | 60445.75 | 393.0709 | 4.31036 | 214.537 | 16627.22 | . 0076 |
| 2042 | 61127.12 | 404.0769 | 4.31036 | 214.537 | 16814.65 | . 0073 |
| 2043 | 61816.84 | 415.3911 | 4.31036 | 214.537 | 17004.37 | . 007 |
| 2044 | 62511.55 | 427.022 | 4.31036 | 214.537 | 17195.47 | . 0067 |
| 2045 | 63211.19 | 438.9786 | 4.31036 | 214.537 | 17387.93 | . 0064 |
| 2046 | 63917.93 | 451.27 | 4.31036 | 214.537 | 17582.33 | . 0061 |
| 2047 | 64628.21 | 463.9056 | 4.31036 | 214.537 | 17777.72 | . 0058 |
| 2048 | 65348.03 | 476.895 | 4.31036 | 214.537 | 17975.72 | . 0055 |
| 2049 | 66072.87 | 490.248 | 4.31036 | 214.537 | 18175.11 | . 0052 |
| 2050 | 66803.52 | 503.9749 | 4.31036 | 214.537 | 18376.09 | . 0049 |

Table 24: Assumptions for each calendar year

Birth year	Normal	Delayed
	Retirement Age	Retirement Credit
1890	780	. 03
1891	780	. 03
1892	780	. 03
1893	780	. 03
1894	780	. 03
1895	780	. 03
1896	780	. 03
1897	780	. 03
1898	780	. 03
1899	780	. 03
1900	780	. 03
1901	780	. 03
1902	780	. 03
1903	780	. 03
1904	780	. 03
1905	780	. 03
1906	780	. 03
1907	780	. 03
1908	780	. 03
1909	780	. 03
1910	780	. 03
1911	780	. 03
1912	780	. 03
1913	780	. 03
1914	780	. 03
1915	780	. 03
1916	780	. 03
1917	780	. 03
1918	780	. 03
1919	780	. 03
1920	780	. 03
1921	780	. 03
1922	780	. 03
1923	780	. 03
1924	780	. 03
1925	780	. 035
1926	780	. 035
1927	780	. 04
1928	780	. 04
1929	780	. 045
1930	780	. 045
1931	780	. 05
1932	780	. 05
1933	780	. 055
1934	780	. 055
1935	780	. 06
1936	780	. 06
1937	780	. 065
1938	782	. 065
1939	784	. 07
1940	786	. 07
1941	788	. 075
1942	790	. 075
1943	792	. 08
1944	792	. 08
1945	792	. 08
1946	792	. 08
1947	792	. 08
1948	792	. 08
1949	792	. 08
1950	792	. 08
1951	792	. 08
1952	792	. 08
1953	792	. 08
1954	792	. 08
1955	794	. 08
1956	796	. 08
1957	798	. 08
1958	800	. 08
1959	802	. 08
1960	804	. 08

Table 25: Assumptions for each birth year. In yetws after 1960, all values are held constant at their 1960 levels.

References

Atherly, A., Dowd, B. E., and Feldman, R. (2004). The effect of benefits, premiums, and health risk on health plan choice in the medicare program. Health services research, 39(4p1):847-864.

Brazier, J. E. and Roberts, J. (2004). The estimation of a preference-based measure of health from the sf-12. Medical care, 42(9):851-859.

Buchmueller, T. (2006). Price and the health plan choices of retirees. Journal of Health Economics, 25(1):81-101.

Dolan, P. (1997). Modeling valuations for euroqol health states. Medical care, 35(11):1095-1108.
Fryback, D. G., Dunham, N. C., Palta, M., Hanmer, J., Buechner, J., Cherepanov, D., Herrington, S., Hays, R. D., Kaplan, R. M., Ganiats, T. G., et al. (2007). Us norms for six generic health-related quality-of-life indexes from the national health measurement study. Medical care, 45(12):1162-1170.

Goldman, D. P., Shekelle, P. G., Bhattacharya, J., Hurd, M., and Joyce, G. F. (2004). Health status and medical treatment of the future elderly. Technical report, DTIC Document.

Honeycutt, A. A., Boyle, J. P., Broglio, K. R., Thompson, T. J., Hoerger, T. J., Geiss, L. S., and Narayan, K. V. (2003). A dynamic markov model for forecasting diabetes prevalence in the united states through 2050. Health care management science, 6(3):155-164.

Kapteyn, A., Michaud, P.-C., Smith, J. P., and Van Soest, A. (2006). Effects of attrition and non-response in the health and retirement study.

Levy, D. (2006). Trends in smoking rates under different tobacco control policies: results from the SimSmoke tobacco policy simulation model.

MacKinnon, J. G. and Magee, L. (1990). Transforming the dependent variable in regression models. International Economic Review, pages 315-339.

Mainous III, A., Baker, R., Koopman, R., Saxena, S., Diaz, V., Everett, C., and Majeed, A. (2007). Impact of the population at risk of diabetes on projections of diabetes burden in the united states: an epidemic on the way. Diabetologia, 50(5):934-940.

Poterba, J., Venti, S., and Wise, D. A. (2007). The decline of defined benefit retirement plans and asset flows. Technical report, National Bureau of Economic Research.

Poterba, J. M., Venti, S. F., and Wise, D. A. (2008). New estimates of the future path of 401 (k) assets. In Tax Policy and the Economy, Volume 22, pages 43-80. University of Chicago Press.

Poterba, J. M., Venti, S. F., and Wise, D. A. (2009). The decline of defined benefit retirement plans and asset flows. In Social Security policy in a changing environment, pages 333-379. University of Chicago Press.

Roodman, D. (2011). Fitting fully observed recursive mixed-process models with cmp. Stata Journal, 11(2):159-206(48).

Ruhm, C. J. (2007). Current and future prevalence of obesity and severe obesity in the united states. In Forum for Health Economics \& Policy, volume 10.

Selden, T. M. and Sing, M. (2008). Aligning the Medical Expenditure Panel Survey to aggregate us benchmarks. Technical report, Agency for Healthcare Research and Quality.

Shaw, J. W., Johnson, J. A., and Coons, S. J. (2005). Us valuation of the eq-5d health states: development and testing of the d1 valuation model. Medical care, 43(3):203-220.

Wooldridge, J. M. (2000). A framework for estimating dynamic, unobserved effects panel data models with possible feedback to future explanatory variables. Economics Letters, 68(3):245250.

This file provides supplementary details for the paper:
Title: Measuring the COVID-19 Mortality Burden in the United States: A Microsimulation Study
Authors: Julian Reif, Hanke Heun-Johnson, Bryan Tysinger, and Darius Lakdawalla

The following sheets contain transition model estimates for relevant variables in the Future Elderly Model, for population ages 55 and over in 2020.

Binaries

This worksheet reports estimates of the probability of dying, of developing a chronic condition (stroke, heart disease, cancer, hypertension diabetes, lung disease, and congestive heart failure), of having a heart attack, and of living in a nursing home.

Ordered Probits

This worksheet reports estimates of the probability of changing smoking status, and of changing ADL and IADL status.

OLS
This worksheet reports estimates of how BMI is updated in the microsimulation.

0.043
0.045
0.053
0.003
0.003
0.003

0.095...	0.031	0.014	${ }^{0.654+\cdots}$	so
${ }_{\substack{\text { O.0.05 } \\ \text { 0.052 }}}^{\text {a }}$	0.030	. 0.01	${ }_{\text {a }}^{0} 0.118$ \%...	0.030

 0.007
o.002
o.011
0.005
o.0001
o. 0.05
o.013
0.001
0.001

 0.013
0.001
o. 0.013
o.005
o. 0002
0.007
0.007
0.007
0.010

$\mathfrak{y y y}$

	coef	p-value	coef	p-value	coef	p-value	coef	p-value	coef	p-value	00
Non-Hispanic black	-0.027*	0.014	0.007		-0.007		-0.000		0.113***	0.016	-0.025
Hispanic	-0.174***	0.019	0.047		-0.047		-0.000		$0.145^{* * *}$	0.020	-0.033
Less than high school	0.012	0.015	-0.003		0.003		0.000		0.125***	0.015	-0.028
Some college and above	$0.093 * * *$	0.012	-0.024		0.023		0.000		-0.041***	0.014	0.009
Male	0.503***	0.014	-0.123		0.121		0.002		-0.056***	0.017	0.012
Male AND Less than high school	0.031	0.023	-0.008		0.008		0.000		-0.030	0.025	0.006
Male AND Non-Hispanic black	$-0.158^{* * *}$	0.023	0.043		-0.042		-0.000		0.001	0.026	-0.000
Male AND Hispanic	0.128***	0.028	-0.031		0.030		0.000		-0.026	0.032	0.006
Male AND Some college and above	-0.248***	0.018	0.068		-0.067		-0.000		-0.035	0.022	0.007
Min (63, two-year lag of age)	0.008***	0.001	-0.002		0.002		0.000		0.007***	0.002	-0.002
$\operatorname{Min}(\operatorname{Max}(0$, two-year lag age -63), 73-63)	$0.003 * *$	0.001	-0.001		0.001		0.000		0.017***	0.002	-0.004
Max(0, two-year lag age - 73)	$-0.010^{* * *}$	0.001	0.002		-0.002		-0.000		0.041***	0.001	-0.009
Two-year lag of Heart disease	0.071***	0.011	-0.018		0.018		0.000		0.129***	0.012	-0.029
Two-year lag of Stroke	0.036**	0.016	-0.009		0.009		0.000		0.253***	0.016	-0.061
Two-year lag of Cancer	0.060***	0.013	-0.015		0.015		0.000		0.054***	0.014	-0.012
Two-year lag of Hypertension	-0.007	0.009	0.002		-0.002		-0.000		0.051***	0.010	-0.011
Two-year lag of Diabetes	-0.019	0.012	0.005		-0.005		-0.000		0.081***	0.013	-0.018
Two-year lag of Lung disease	$0.214^{* * *}$	0.016	-0.050		0.049		0.001		0.235***	0.015	-0.057
Two-year lag of R had heart attack since last wave	0.095***	0.031	-0.023		0.023		0.000		0.032	0.031	-0.007
Two-year lag of Has exactly 1 IADL	-0.008	0.019	0.002		-0.002		-0.000		$0.345^{* * *}$	0.017	-0.087
Two-year lag of Has 2 or more IADLs	-0.068**	0.027	0.018		-0.018		-0.000		$0.712^{* * *}$	0.024	-0.209
Two-year lag of Has exactly 1 ADL	$0.034^{* *}$	0.015	-0.008		0.008		0.000		1.049***	0.013	-0.328
Two-year lag of Has exactly 2 ADLs	0.029	0.022	-0.007		0.007		0.000		$1.494 * * *$	0.018	-0.508
Two-year lag of Has 3 or more ADLs	-0.032	0.021	0.008		-0.008		-0.000		2.080***	0.019	-0.696
Two-year lag of Current smoking	2.558***	0.017	-0.277		0.117		0.160		0.098***	0.016	-0.022
Two-year lag of Widowed	-0.031***	0.012	0.008		-0.008		-0.000		0.034***	0.013	-0.008
Heart problem status at age 50 (1/0)-imputed	0.063*	0.037	-0.015		0.015		0.000		0.041	0.038	-0.009
Stroke status at age 50 (1/0)-imputed	0.258***	0.080	-0.058		0.057		0.001		-0.018	0.080	0.004
Cancer status at age 50 (1/0)-imputed	0.017	0.025	-0.004		0.004		0.000		0.076***	0.028	-0.017
High blood preasure status at age 50 (1/0)-imputed	-0.008	0.019	0.002		-0.002		-0.000		0.017	0.021	-0.004
Diabetes status at age 50 (imputed)	0.030	0.019	-0.007		0.007		0.000		0.124***	0.020	-0.028
Lung disease status at age 50 (1/0)-imputed	-0.169***	0.060	0.046		-0.046		-0.000		0.021	0.059	-0.005
Smoking status at age 50 (imputed)	2.880***	0.033	-0.482		0.371		0.112		0.078***	0.014	-0.017
Splined two-year lag of BMI <= $\log (30)$	-0.098*	0.051	0.025		-0.025		-0.000		-0.430***	0.055	0.093
Splined two-year lag of BMI > $\log (30)$	0.331***	0.067	-0.084		0.083		0.001		0.724***	0.067	-0.157
Splined init of BMI age $50<=\log (30)$	$0.122^{* *}$	0.051	-0.031		0.031		0.000		0.669***	0.056	-0.145
Splined init of BMI age $50>\log (30)$	-0.354***	0.072	0.090		-0.089		-0.001		0.370***	0.071	-0.080
Log of years between current interview and previous	-0.043*	0.023	0.011		-0.011		-0.000		$0.218^{* * *}$	0.027	-0.047
Init. of Ever smoked note: . 01 - ***; . 05 - **; . 1 - *;									-0.001	0.012	0.000

	ADL status (adistat) marginal effects						IADL status (iadlstat) coefficients				IADL sta
	p-value	coef	p -value	coef	p-value	coef	p-value	coef	p-value	coef	p-value
Non-Hispanic black		0.014		0.006		0.005		$0.113^{* * *}$	0.020	-0.014	
Hispanic		0.018		0.008		0.007		$0.195^{* * *}$	0.024	-0.026	
Less than high school		0.016		0.007		0.006		$0.193 * * *$	0.019	-0.025	
Some college and above		-0.005		-0.002		-0.002		-0.029	0.018	0.003	
Male		-0.007		-0.003		-0.002		0.100***	0.021	-0.012	
Male AND Less than high school		-0.004		-0.002		-0.001		0.007	0.029	-0.001	
Male AND Non-Hispanic black		0.000		0.000		0.000		-0.013	0.031	0.001	
Male AND Hispanic		-0.003		-0.001		-0.001		-0.087**	0.037	0.010	
Male AND Some college and above		-0.004		-0.002		-0.001		$-0.087^{* * *}$	0.027	0.010	
Min(63, two-year lag of age)		0.001		0.000		0.000		-0.009***	0.002	0.001	
$\operatorname{Min}(\operatorname{Max}(0$, two-year lag age -63), 73-63)		0.002		0.001		0.001		$0.023^{* * *}$	0.002	-0.003	
Max (0, two-year lag age - 73)		0.005		0.002		0.002		$0.047^{* * *}$	0.001	-0.006	
Two-year lag of Heart disease		0.016		0.007		0.006		$0.068 * * *$	0.014	-0.008	
Two-year lag of Stroke		0.033		0.015		0.013		0.294***	0.018	-0.042	
Two-year lag of Cancer		0.007		0.003		0.002		0.011	0.017	-0.001	
Two-year lag of Hypertension		0.006		0.003		0.002		$0.035^{* * *}$	0.013	-0.004	
Two-year lag of Diabetes		0.010		0.004		0.004		0.116***	0.015	-0.014	
Two-year lag of Lung disease		0.030		0.014		0.012		0.087***	0.019	-0.011	
Two-year lag of R had heart attack since last wave		0.004		0.002		0.001		0.025	0.036	-0.003	
Two-year lag of Has exactly 1 IADL		0.045		0.022		0.020		1.102***	0.017	-0.250	
Two-year lag of Has 2 or more IADLs		0.095		0.054		0.060		1.988***	0.024	-0.591	
Two-year lag of Has exactly 1 ADL		0.133		0.084		0.111		$0.331 * * *$	0.018	-0.048	
Two-year lag of Has exactly 2 ADLs		0.149		0.125		0.234		$0.484^{* * *}$	0.023	-0.079	
Two-year lag of Has 3 or more ADLs		0.119		0.144		0.432		$0.653^{* * *}$	0.021	-0.118	
Two-year lag of Current smoking		0.012		0.005		0.004		0.094***	0.020	-0.012	
Two-year lag of Widowed		0.004		0.002		0.001		0.018	0.015	-0.002	
Heart problem status at age $50(1 / 0)$-imputed		0.005		0.002		0.002		0.024	0.048	-0.003	
Stroke status at age 50 (1/0)-imputed		-0.002		-0.001		-0.001		0.033	0.091	-0.004	
Cancer status at age 50 (1/0)-imputed		0.010		0.004		0.003		0.038	0.036	-0.005	
High blood preasure status at age 50 (1/0)-imputed		0.002		0.001		0.001		0.023	0.027	-0.003	
Diabetes status at age 50 (imputed)		0.016		0.007		0.006		$0.112^{* * *}$	0.025	-0.014	
Lung disease status at age 50 (1/0)-imputed		0.003		0.001		0.001		-0.019	0.076	0.002	
Smoking status at age 50 (imputed)		0.010		0.004		0.003		0.011	0.017	-0.001	
Splined two-year lag of BMI <= $\log (30)$		-0.053		-0.022		-0.018		$-0.841^{* * *}$	0.064	0.099	
Splined two-year lag of BMI $>\log (30)$		0.089		0.038		0.030		-0.192**	0.089	0.023	
Splined init of BMI age $50<=\log (30)$		0.082		0.035		0.028		0.564***	0.067	-0.066	
Splined init of BMI age $50>\log (30)$		0.045		0.019		0.016		0.160*	0.091	-0.019	
Log of years between current interview and previous		0.027		0.011		0.009		0.320***	0.033	-0.038	
Init. of Ever smoked		-0.000		-0.000		-0.000		0.009	0.015	-0.001	

Hispanic

Non-Hispanic blac

Less than high school
Some college and above
Male
Male AND Less than high school
Male AND Non-Hispanic black
Male AND Hispanic
Male AND Some college and above
$\operatorname{Min}(63$, two-year lag of age)
$\operatorname{Min}(\operatorname{Max}(0$, two-year lag age -63), 73-63)
Max(0, two-year lag age-73)
Two-year lag of Heart disease
Two-year lag of Stroke
Two-year lag of Cancer
Two-year lag of Hypertension
Two-year lag of Diabetes
wo-year lag of Lung disease
Two-year lag of R had heart attack since last wave
Two-year lag of Has exactly 1 IADL
Two-year lag of Has 2 or more IADLs
Two-year lag of Has exactly 1 ADL
Two-year lag of Has exactly 2 ADLs
Two-year lag of Has 3 or more ADLs
Two-year lag of Current smoking
Two-year lag of Widowed
Heart problem status at age 50 (1/0)-imputed
Stroke status at age 50 (1/0)-imputed
Cancer status at age 50 (1/0)-imputed
High blood preasure status at age 50 (1/0)-imputed
Diabetes status at age 50 (imputed)
Lung disease status at age 50 (1/0)-imputed
Smoking status at age 50 (imputed)
Splined two-year lag of BMI $<=\log (30)$
Splined two-year lag of BMI > log(30)
Splined init of BMI age $50<=\log (30)$
Splined init of BMI age $50>\log (30)$
Log of years between current interview and previous
Init. of Ever smoked
note: . 01 - ***; . 05 - **; . 1 - *;
tus (iadlstat) marginal effects

coef	p-value	coef	p-value
0.010		0.004	
0.019		0.007	
0.018		0.007	
-0.003		-0.001	
0.009		0.003	
0.001		0.000	
-0.001		-0.000	
-0.007		-0.002	
-0.007		-0.002	
-0.001		-0.000	
0.002		0.001	
0.004		0.001	
0.006		0.002	
0.030		0.012	
0.001		0.000	
0.003		0.001	
0.011		0.004	
0.008		0.003	
0.002		0.001	
0.149		0.100	
0.233		0.357	
0.034		0.014	
0.055		0.025	
0.079		0.039	
0.009		0.003	
0.002		0.001	
0.002		0.001	
0.003		0.001	
0.003		0.001	
0.002		0.001	
0.010		0.004	
-0.002		-0.001	
0.001		0.000	
-0.073		-0.025	
-0.017		-0.006	
0.049		0.017	
0.014		0.005	
0.028		0.010	
0.001		0.000	

	0.001^{*}	0.001	0.001
Male	$-0.002^{* *}$	0.001	-0.002
Non-Hispanic black	$-0.002^{* *}$	0.001	-0.002
Hispanic	$-0.002^{* *}$	0.001	-0.002
Less than high school	-0.000	0.001	-0.000
Some college and above	0.001	0.001	0.001
I2adI1p	$-0.004^{* * *}$	0.001	-0.004
2iadI1p	0.000	0.001	0.000
Male AND Less than high school	$-0.005^{* * *}$	0.001	-0.005
Male AND Non-Hispanic black	-0.001	0.002	-0.001
Male AND Hispanic	-0.001	0.001	-0.001
Male AND Some college and above	-0.000	0.000	-0.000
Min(63, two-year lag of age)	$-0.001^{* * *}$	0.000	-0.001
Min(Max(0, two-year lag age - 63), 73 -63)	$-0.002^{* * *}$	0.000	-0.002
Max(0, two-year lag age - 73)	-0.001	0.001	-0.001
Two-year lag of Heart disease	$-0.003^{* * *}$	0.001	-0.003
Two-year lag of Stroke	-0.001	0.001	-0.001
Two-year lag of Cancer	$0.004^{* * *}$	0.000	0.004
Two-year lag of Hypertension	-0.001	0.001	-0.001
Two-year lag of Diabetes	$-0.005^{* * *}$	0.001	-0.005
Two-year lag of Lung disease	$0.006^{* * *}$	0.002	0.006
Two-year lag of R had heart attack since last wave	$-0.003^{* *}$	0.002	-0.003
Two-year lag of Has 2 or more IADLs	0.000	0.001	0.000
Two-year lag of Has exactly 2 ADLs	-0.001	0.001	-0.001
Two-year lag of Has 3 or more ADLs	$-0.011^{* * *}$	0.001	-0.011
Two-year lag of Current smoking	0.001^{*}	0.001	0.001
Two-year lag of Widowed	-0.000	0.002	-0.000
Heart problem status at age 50 (1/0)-imputed	0.009^{*}	0.005	0.009
Stroke status at age 50 (1/0)-imputed	0.002^{*}	0.001	0.002
Cancer status at age 50 (1/0)-imputed	$0.003^{* * *}$	0.001	0.003
High blood preasure status at age 50 (1/0)-imputed	$-0.004^{* * *}$	0.001	-0.004
Diabetes status at age 50 (imputed)	0.005	0.003	0.005
Lung disease status at age 50 (1/0)-imputed	$0.002^{* * *}$	0.001	0.002
Init. of Ever smoked	0.001	0.001	0.001
Smoking status at age 50 (imputed)	$0.814^{* * *}$	0.003	0.814
Splined two-year lag of BMI <= log(30)	$0.827^{* * *}$	0.004	0.827
Splined two-year lag of BMI > log(30)	$0.138^{* * *}$	0.003	0.138
Splined init of BMI age 50 <= log(30)	$0.102^{* * *}$	0.004	0.102
Splined init of BMI age 50 > log(30)	$-0.012^{* * *}$	0.001	-0.012
Log of years between current interview and previous	0.000	0.000	0.000
Init. of	0.057	0.088	
_cons			
note: .01 -***; .05 - **; .1 - *;			

[^0]: ${ }^{1}$ With some abuse of notation, $j_{i}-1$ denotes the previous age at which the respondent was observed.

[^1]: ${ }^{2}$ We estimate annual medical spending paid by specific parts of Medicare (Parts A, B, and D) and sum to get the total Medicare expenditures.

[^2]: ${ }^{1}$ Section 9.1 explains why the $h_{i, j_{0},-m}$ terms are included.
 ${ }^{2}$ With some abuse of notation, $j_{i}-1$ denotes the previous age at which the respondent was observed.

[^3]: ${ }^{3}$ Section 9.2 .1 gives some background on HRQoL measures.
 ${ }^{4}$ Section $\overline{9.2 .2}$ describes EQ-5D in MEPS. Details of the crosswalk model development are given in 9.2.3.

[^4]: ${ }^{5}$ We estimate annual medical spending paid by specific parts of Medicare (Parts A, B, and D) and sum to get the total Medicare expenditures.

[^5]: Table 23: Simulation results for obesity reduction scenario compared to status quo

